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ABSTRACT 

This thesis investigates the application of wavelet decompositions to classification applications. 

Two feature extraction tools are considered: Local Discriminant Bases scheme (LDB) and Power 

method. Several dimension reduction schemes including a newly proposed one called one the Mean 

Separator neural network (MS NN) are discussed. Two types of classifiers are investigated and 

compared: Classification Trees (CT) and Back-propagation neural network (BP NN). Classification 

experiments conducted on synthetic and real-world underwater signals show that: 1) the Power feature 

extraction method is more robust to time synchronization issues than the LDB scheme is; 2) the MS 

NN scheme is a successful dimension reduction scheme that may be used with both LDB and Power 

feature extraction methods; and 3) the BP NN is a more powerful classifier than CT as it has fewer 

constraints than CT in partitioning the feature input space. 
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I.        INTRODUCTION 

Wavelet-based decompositions have been used extensively in the last decade in 

various areas such as engineering, finances, and statistics. In signal processing, this tool 

is applied to areas such as signal compression, noise removal and signal classification. 

This work considers wavelet-based decompositions as applied to classification 

applications. A typical classification scheme consists of three parts: a feature extraction, 

a dimension reduction and a classification part. Chapter II briefly reviews the wavelet 

decomposition, and highlights the main differences relative to the Fourier transform. In 

Chapter IE, we investigate the application of the wavelet packet decomposition to the 

Local Discriminant Bases (LDB) scheme originally proposed by Saito, and show that it is 

sensitive to time synchronization problems. Then we introduce an alternative, called the 

Power feature extraction method. This method is based on frequency band specific power 

quantities, which are more robust to time synchronization issues without worsening the 

classification performance. This chapter also presents four dimension reduction schemes 

associated with the Power feature extraction method: Learned and Willsky's, most 

consistent, most discriminating and LDB based dimension reduction schemes. Several 

examples are implemented to give some insights about the feature extraction and 

dimension reduction schemes introduced in this chapter. Chapter IV presents and 

compares two types of classifiers: back-propagation neural networks (BP NN) and 

classification trees (CT). Chapter V considers several feature extraction and dimension 

reduction methods. These steps are key in obtaining good classification performance 



when the amount of data available to build the classification tools is limited, or when 

subject to computer capability constraints. We consider the BCM neural network 

implementation, which can be used as a feature reduction scheme, and show that it is 

computationally slow. As an alternative we propose a mean separator neural network (MS 

NN), initially designed to distinguish between two classes, and extend it to the more^than 

two-classes case. We also show that the MS NN can be followed by a decision step to 

create a stand alone classification scheme which has a performance comparable to that 

obtained with more sophisticated classifiers at a fraction of the computational cost. In 

Chapter VI, we investigate the behavior of the various schemes and consider both a 

synthetic and a real-world underwater signal. This demonstrates that the proposed MS 

NN is a successful dimension reduction scheme that may be used with both LDB and 

Power feature extraction methods. Finally, conclusions are presented in Chapter VII. 



II.       WAVELETS ANALYSIS 

Wavelet  analysis has been used extensively in the last decade in various fields 

from engineering to finances, and can be viewed as a complement to the well-known 

Fourier transform method [6,18]. Thus, we will first review the Fourier transform before 

presenting the basic concepts behind wavelet-based decompositions. Note that at this 

point the discussion is restricted to discrete time functions, as only discrete time domain 

signals are considered in this work. 

A.       DISCRETE-TIME FOURIER ANALYSIS 

1.        The Discrete-Time Fourier Series 

Recall that a periodic function x(n) with period N may be defined as a linear 

combination of periodic complex exponentials with amplitude A(k) [1]: 

N lirnk 

x(n) = YiA(k)e   N ,n=0,l, ,N-1. (2.1) 
k=0 

Identifying the complex amplitude terms A(k) can be done by evaluating Equation 

2.1 for n=0,1,2,.... ,N-1, which results in JV linear equations with N unknowns: 

*(0) = 5>(fc), (2.2) 
k 

2refe 

x{\) = ^A{k)e  N , 

2xk(N-l) 

x(N-l) = ^A(k)eJ    N 



It can be shown that the above set of N equations is linearly independent and can 

be solved to obtain the values A(k) [1]. However, for practical purposes a closed form 

expression for calculating A(k) is more desirable. Note that, if both sides of Equation 2.1 

2xrn 

are multiplied by the term, e    N , where r is an integer, and the resulting expression 

summed over N terms gives: 

N~l _  2nrn        N-l N-l 2K(k-r)n 

J,x(n)e~J »   =22- 
B=0 71=0 Jfc=0 

jj>G0«-' N   =XI>(fc)ß
y    »     . (2.3) 

Interchanging the order of the summations appearing in Equation 2.3 results in: 
N-l 2%m        N-l N-l      2n(k-r)n 

2,x(n)e~J~ =2,A(k)J,eJ    N     . (2.4) 
n=0 *=0 «=0 

It can be shown that the rightmost term contained in Equation 2.4 is equal to zero 

unless the term (k-r) is zero, or is an integer multiple of iV [1]. As a result, the rightmost 

summation expression contained in Equation 2.4 is equal to Af only if k=r and equal to 

zero otherwise. Thus, the amplitude term A(k) can be derived from Equation 2.4 as: 

1    N-l _  2iAn 

A(k) = — ^x(n)e~J N   ,k=0,l,....N-l. (2.5) 

The magnitudes of the coefficient terms A(k) expressed as a function of the 

frequency index k form the magnitude spectrum of the time domain signal x(n). The 

frequency presentation of nonperiodic signals can be found with a similar method by 

assuming that the signal is periodic with period equal to the signal length iV [2]. The 

resulting discrete frequency coefficients are then calculated using Equation 2.5. 
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The coefficients obtained using Equation 2.5 are one of the possible candidates 

for feature selection in classification tasks, as they represent the amount of power 

associated with the signal in a given frequency band [3]. 

2.        Discrete-Time Fourier Series Transform And Filter Banks 

The discrete Fourier transform coefficients A(k) can also viewed as the outputs of 

a bank of FIR filters followed by decimators, as shown in Figure 2.1, where the 

decimation operator keeps every N~ term obtained in the filter outputs. Such a 

connection is illustrated next by deriving Equation 2.5 using the filter bank approach. Let 

us assume the impulse response for the k^1 filter shown in Figure 2.1 is defined as: 

H ,(«) =—e~J     N      ,n=0,l,....,N-l,k=0,l,...,N-l. (2.6) 
N 

Then using the convolution sum, the filter output yk (n) can be expressed as: 

1 n 2nk(N-\-n+m) 

yM=—   £*(m)*~'       » ,n=0,l, , <*», k=0,l,...,N-l. (2.7) 
™ m=n-N+\ 

At this point, note that only the N— output value is kept after the decimation 

operation, leading to the output of the k- branch as: 

1    AT-l 2itkm 

yk(N-\)= — ^x(m)e~J N   . (2.8) 
™ m=0 

Comparing Equations 2.5 and 2.8 shows that A(k) = yk (N -1), which validates 

the filter bank approach. This approach can also be viewed as using FIR matched filters. 

Recall that a matched filter gives a high output if the input signal looks like the impulse 

response of the filter. Thus the coefficients A(k) indicate how close the input signal is to 

the set of filter impulse responses defined in Equation 2.6. 



—,n = 0,l N-\ 
N 

1        1     TiT         1                              *           7L   1 r\\ (   | N     1                *     A(UJ 

^ -^ 

i          .2jt(tf-l-<0 

—e'     "      ,«=0,1 ,N-l 
N 

(   I  W     ]                   »        nil V  ▼       y               *      A(±) 

xinj 

1         Att(H-l-n) 

—e'     »     ,« = 0,1 N-l 
N 

^^       .   .... 
 IT      J-        *     A (2) 

1          .2lt(«-I)(JV-l-n) 
(1M)                   >          A (N-1 ) 

A KU 

Figure 2.1: Discrete Fourier series transform interpretation as a filter bank. 

3.        DFT Coefficients as Feature Parameters 

Classification tasks are usually two-step processes, as one must first extract 

relevant feature parameters which accurately characterize each signal class, prior to 

classifying the data. The feature selection or extraction process has been extensively 

studied [12, 13, 17, 21] and we will address it in later chapters. Signal energy quantities 

have been used as a simple choice of feature parameters, as they are easy to compute and 

often lead to good results. Recall that the magnitude squared of the k— discrete Fourier 

series coefficient, IA(fc)l2, represents the amount of signal energy in the frequency band 

centered at 2kK with bandwidth ?JL. Such "frequency band"-specific energy quantities 
N N 



have also been selected as feature parameters, and used as inputs to a back-propagation 

neural network in numerous implementation [23, 24]. For example, simulations using 

underwater biological signals showed that the resulting classification rates exceed 90%, 

when used on properly segmented data [23, 24]. Here, the problem becomes the selection 

of the frequency bands that best discriminate between the signal classes to reduce the 

number of feature parameters. Note that such feature selection schemes are very different 

from those applied in compression applications, where the selection criterion is designed 

to minimize the difference between original and compressed signals.    As a result, 

frequency bands with the high energy are kept in compression applications.   Such a 

selection may not be valid for classification tasks, where the class discriminant 

information may be contained in frequency bands of relatively low energy. Discriminant 

selection schemes are addressed further in Chapter IE. 

4.        Short-Time Fourier Transform 

As mentioned earlier, the Fourier transform allows the user to obtain the 

frequency content of the time domain signal. However, this method is not very useful if 

the signal frequency representation changes with time [5], as is the case for non-stationary 

signals. In such a case, the frequency information obtained with the Fourier transform 

represents the average frequency behavior observed in the time interval over which the 

Fourier transform is computed. A more accurate representation of the time-varying nature 

of the frequency information is obtained with the short-time Fourier transform (STFT) as 

the STFT mapping is from the time domain space to a two-dimensional time-frequency 

representation. 
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The main idea behind the STFT is the introduction of a finite-time moving 

window w(n) of length N in which the signal frequency content is computed via the 

Fourier transform. The window length is selected so that the signal is considered to be 

stationary over the window length. Thus, the short-time Fourier transform of a given time 

domain signal x(n), using a window w(n), is defined as: 

A(n,f)=±x(k)w(n-k)e-™. (2.9) 

The resulting two-dimensional coefficient A{n,f) has two indexes; n represents the 

time index, while / represents the frequency. Thus A(n,f) represents the time-varying 

frequency information of the time domain signal x(n). The square of the magnitude, 

|A(n,/)|2, is called the spectrogram. For example, Figure 2.2 shows the spectrogram 

obtained from the signal x(n) which is the sum of a constant tone at frequency 0.5 Hz and 

a linear chirp with sweep rate —— Hz/sec, which are sampled at 2 Hz: 
4096 

OiTcn2 

x(n) = sin(^-) + sin(05roi), n=0,l 8191. (2-10) 
8192 

Note that different types of window functions can be used to compute the STFT, 

resulting in different time-frequency resolutions. However, recall that the product of the 

time duration window size At and the frequency bandwidth Af of any signal has a lower 

bound, given by _L, due to the Heisenbergs uncertainty principle [5]. The specific time- 

frequency partitioning is fixed by the specific choice of time window   and one cannot 

obtain good time and good frequency resolution simultaneously. Thus, the STFT is well- 



suited to analyze signals which are either narrowband (a good frequency resolution can be 

obtained by selecting a long time-window), or wideband (a good time-resolution is 

obtained by selecting a short time-window). However, the STFT is ill-suited to analyze 

signals which exhibit both narrowband and wideband components, as a fixed window 

will not be able to analyze both types of components well. The window length restriction 

is one of the main problems associated with the STFT. Wavelet analysis addresses this 

shortcoming by defining a two-dimensional time-frequency transform with a variable 

time window length. 

Window: , FFT: 512, Frame: 256 pts, Overlap: 51 %, FS: 2 Hz 

Figure 2.2: Spectogram plot of a linear chirp and a single tone. 



B.       WAVELET ANALYSIS 

1.        The Continuous Wavelet Transform 

The easiest way to understand the basic concept behind wavelet analysis is to 

compare it to the STFT method mentioned earlier. Recall that the STFT is computed by 

moving a windowed function w{n)e~i2vfn along the time axis, and computing the inner 

product between the signal x(n) and the windowed function [5]. Now assume we use a 

function ¥lb(t) in place of the windowed function in the STFT definition, where 

*Fa b (t) is defined in terms of a function *F(t), defined with specific properties as: 

^(0 = 4T
VP
^)'   a,beR,a*0. (2.11) 

Note that *Fa b (t) has two variable parameters: a and b. The index b, called the 

time shift, allows for time shifting of *Fa>b(t), while the index a, called the scale, allows 

the function *Fa b (t) to expand or contract. These two indexes allow for the definition of 

a two-dimensional transformation which uses a time window of varying length, 

depending on the value chosen for a. Such a definition leads to a varying time-frequency 

partitioning. The function *P(?) is called the mother wavelet. The continuous wavelet 

transform is defined as: 

Wf(a,b) = {f(t),^b(t)}, (2.12) 

where the notation "< >" denotes the inner product. 

Several types of mother wavelet functions *F(t) can be defined, which offers 

more flexibility than the STFT where the basis function type is restricted to that of a 

10 



windowed complex exponential. However, the wavelet function must satisfy two 

important conditions: 1) The wavelet function *F(t)   should be of finite time duration; 2) 

the area under ^(t) should be equal to zero [6]. There are numerous functions that 

satisfy these conditions. Examples, such as Daubechies, Haar, Coiflet, and Symmlet 

wavelets are plotted in Figure 2.3. 

Haar Wavelet D4 Wavelet 
0.2 

0.1 

O 

-0.1 

'oL 

0.2 

0.1 

o 

-0.1 

-0.2 

0.4 0.6 

C3 Coiflet 

0.8 -°§L 

0.2 

0.1 

O 

-0.1 

-0.2 
0.4 0.6 0.8 

0.2 

O.I 

O 

-O.I 

-°-§ 

0.4 0.6 

S8 Symmlet 

0.8 

0.4 0.6 0.8 

Figure 2.3: Four wavelets in the time domain, from Ref. [10]. 

Let us further expand on the meaning of the indexes a and b, which are key to 

understanding the power of the wavelet decomposition. By convention, a low scale (i.e., 

small value of the index a) leads to a high frequency wavelet function *Pa b (t) which 

provides good time resolution with poor frequency resolution. Conversely, a large value 

for the index a refers to a low frequency wavelet function Ta b (t), which provides poor 

11 



time resolution with good frequency resolution [6,8]. This behavior is further illustrated 

in Figure 2.4 which plots the function ^a b (t) obtained for various sets of indexes (a,b) = 

{ (7,95), (6,43), (6,32), ...}, for a Symmlet-8 wavelet. Figure 2.4 clearly shows that as the 

scale decreases, the wavelet function becomes more localized in time but its frequency 

resolution becomes poorer. 

The magnitude squared of the wavelet coefficients Wf (a,b)  plotted as a function 

of the indexes a and b shows the energy distribution of the signal in the time-scale plane, 

and is called the scalogram [9]. 

2.        STFT and WT comparisions 

In this section, we compare the STFT and the wavelet transform (WT) using two 

simple examples. 

a)        Wideband signal 

Consider a delta function located at t-to in the time domain. The resulting 

spectrogram is shown in the top left plot contained in Figure 2.5. Note that the time 

domain uncertainty in localizing the impulse location is constant for all frequencies when 

using the STFT, as expected, as the time window length is fixed once selected. Thus, it 

may be difficult to estimate the exact occurrence of the impulse when a long time window 

is selected. The top right plot in Figure 2.5 shows the scalogram obtained for the same 

impulse located at time t=to. Note that the scalogram leads to a better localization of the 

impulse, since a good time resolution is obtained at low scales (i.e., high frequencies). 

12 



b) Narrowband signal 

Now assume we have two sinusoidal signals with low and high 

frequencies. The spectrogram plot in the bottom left plot of Figure 2.5 shows that both 

sines have the same frequency resolution, due to the constant time window for the STFT. 

However, the frequency resolution is not constant in the WT, which leads to the bottom 

right plot of Figure 2.5. In this case, the sinusoidal component with higher frequency has 

a poorer frequency resolution. The frequency resolution is a direct result of allowing for 

time windows of varying length in the time domain. These two simple examples point out 

an important feature in the wavelet transform; it is well matched to real-world signals that 

are transient having high frequencies or are of relative long duration at low frequencies. 

In general, the WT can handle signals which contain both low frequency narrowband and 

wideband components, while the resolution of the STFT is fixed by the specific choice of 

the time-window. 

The multiresolution WT time-frequency mapping and that of the STFT 

are plotted in Figure 2.6. 

13 



time domain G.k) Frequency Response (j.k) 

r t 
(3,9! i) 
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Normalized Time 
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Figure 2.4 :Symmlet-8 wavelet in the time and frequency domains, from Ref. [7]. 

LI 
►Ar-« 

Spectogram of an impulse Scalogram of an impulse 

f2 

Spcctogram  of two sines Scalogram of two sines 

Figure 2.5: Spectogram and scalogram plots for two signals. Top plots show transforms 
for an impulse function and bottom plots show transforms for two sinusoidal signals. 
After Ref. [10]. 
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I 

Frequen 

i~^U                        STFT Time-Frequency Plane 

Wavele Time-Frequency Plane 

^^      lime 

™    Time 

Figure 2.6: Time-Frequency plane for STFT and Wavelet Transform, after Ref. [6]. 

3.        The Discrete Wavelet Transform 

The discrete wavelet transform (DWT) is the sampled version of the continuous 

WT. The DWT of a time domain signal x(n) is defined as : 

1 , n-b 
Wx(a,b) = "L-rX{n)V'(—). 

n -Ja a 
(2.13) 

Note that indexes a and b take only discrete values in the DWT. The index a, 

commonly chosen as 2*, where j= 0,1,2....,log2(N), is called the octave of the 

transformation. As the scale index j increases by one, the discrete mother wavelet 

function is stretched in the time domain and compressed in the frequency domain by a 

factor of two. Thus, the frequency resolution doubles with every scale increase. Next, if 
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the time shifting parameter b is restricted to k2i , where k is an integer, this version of the 

DWT is known as the decimated DWT and can be rewritten as: 

1 
™j.t=

yL<Jin'x(n)xl''V~J»-V> (2.14) 

where j=0,1,2,..., log2(N), k=l,2,...., N2'j, and N is the length of the signal x(n). 

Note the number of wavelet coefficients drops to half of those contained in the 

adjacent lower scale. Figure 2.7 displays various scaled and time shifted versions, i.e., 

*F (2~jn- k), of the Symmlet-8 wavelet. Note that as the scale./ decreases, the wavelet 

becomes more localized in time. 

time domain G,k) 

^ 

ir 
(3,95) 

(4,43) 

(4,32) 

(4,21) 

(5,13) 

(6,8) 

(7,5) 

(7,2) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Normalized Time 

Figure 2.7: Symmlet-8 wavelet at various scales j and shifts k, from Ref. [7]. 
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4.        Multiresohition Analysis and Filterbanks 

An efficient procedure to implement the DWT using filterbanks was proposed by 

Mallat [9]. Mallat's multiresolution algorithm is based on a pair of lowpass and highpass 

filters which equally partition the frequency axis. These filters, called quadrature mirror 

filters (QMF), must satisfy very specific properties. Further details may be found in [6,9]. 

The output of the highpass (HP) filter H(z) contains the high frequency detail components 

of the signal, while the output of the lowpass filter G(z) contains the low frequency 

components, as shown in Figure 2.8. The output of each filter can then be decimated by a 

factor of 2, as each filter output covers only half the frequency bandwidth. The resulting 

decimated coefficients obtained as the HP filter output constitute the wavelet coefficients 

at the first scale. The decimated lowpass filter output is then passed through a highpass 

and a lowpass and decimated again. The decimated coefficients obtained after the 

highpass filter operation are the wavelet coefficients of the second scale. Filtering and 

decimating operations can then be repeated again, until the decimated signal is one point, 

if desired. Thus, the wavelet transform operation can be represented in a tree structure, as 

given in Figure 2.9. Note that the WT decomposition can also be represented as in Figure 

2.10 by combining the successive decimation and filtering operations. 

Response j 
LPF 

V 
HPF 

Frequency 

High-Pa** filler H(z) 

Low-Pass Filter G<z) 1 

Fs/4 Fs/2 

Figure 2.8: Schematic representation of Quadrature Mirror Filters (QMF), from Ref. [6]. 
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Figure 2.9: Schematic representation of the Mallat Algorithm, from Ref. [6]. 
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Figure 2.10: Discrete Wavelet Transform via the Filter Bank. 

The decimated DWT described above leads to an orthogonal decomposition of a 

time domain signal only if the lowpass and highpass filters are chosen properly. Further 

details regarding these properties may be found in [6,9,11]. 
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5.        DWT and The Time-Varying Property 

A potential drawback in the definition of the DWT is the fact that the transform is 

shift variant, due to the decimation operations. "Shift variant" means that the DWT 

coefficients obtained from the shifted time domain signal are different from the 

coefficients obtained from the non-shifted signal. This property of the DWT makes it 

difficult to use the DWT parameters as feature parameters for signal classification [12, 

13, 15], as proper synchronization of the signals to be classified would be needed prior to 

applying the DWT decomposition. The shift variant property of the DWT coefficients 

associated with a linear chirp signal can be seen in Figure 2.11. Note that only a 10 step 

shift in the time domain signal results in drastically different DWT coefficients. 

-3 
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-4 
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Multi-Resolution Decomposition 

<W- 

4ft— 

-3 

-3.5 

Multi-Resolution Decomposition 

A_ 

-6.5 

-7 

-7.S 

"\/\JW- 

O.S 
t 

Figure 2.11: DWT coefficients of a linear chirp (left figure) and of a shifted version (right 
figure). 

One of the methods to address DWT shift variance is cycle-spinning [14]. 

Basically, cycle spinning efficiently computes the averaged DWT coefficients obtained 
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from successive shifted versions of the original time signal. Another method uses a 

target-entropy value to eliminate the time-variant property [15]. 

C.       WAVELET PACKETS 

Understanding the wavelet transform is a key point to understanding the wavelet 

packet (WP) decomposition. The DWT can be represented as a tree structure, as shown in 

Figure 2.12. This tree structure can be extended by passing the high-pass section of the 

data through quadrature-mirror filters, as was done for the low-pass portion of the data. 

This operation will divide the upper frequency band into two parts. Repeating this 

operation for each successive scale leads to the complete tree structure, as shown in 

Figure 2.13. The octave; associated with the scale 2 is shown at each level. The outputs 

of highpass and lowpass filter combinations at each level are called "nodes." The node 

numbering is performed from left to right starting from 0 at every scale so the node 

number (1,0) is the node at scale 1 which covers the frequency axis from 0 to Fs/4, while 

node (1,1) covers the frequency axis from Fs/4 to Fs/2, where Fs represents the sampling 

frequency. Figure 2.13 shows the node locations and the node numberings for the first 4 

scales on the WP decomposition tree. 

1.        Basis Selection 

The decomposition obtained with the full tree is redundant, as every parent node 

can be replaced by its two children nodes [16,17]. For example, consider the lowpass 

node at scale 1 (nodes number (1,0)). The information obtained at this node may also 

replaced with that of its two children nodes (2,0) covering the frequency band [0, Fs/8] 
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and (2,1) covering the frequency band [Fs/8, Fs/4]. Actually, it is the inherent redundancy 

present in the WP decomposition that usually leads to better performances than those 

obtained with the WT. The WP decomposition allows for the selection of a "best" non- 

redundant decomposition  among   2 possible decompositions,  where j is  the 

maximum possible number of scales of a given signal [17]. The specific criterion 

involved in the "best" selection is left to the user who matches it to the specific 

application at hand, provided that it leads to a complete non-redundant coverage of the 

frequency axis. Note that one of the WP decomposition schemes is the DWT. Another 

possible decomposition is given in Figure 2.14. It is clear that the decomposition shown 

in Figure 2.14 has good time resolution at low frequencies. All the possible 

decomposition schemes form a complete orthogonal basis [17]. Next, Chapter El 

introduces the two feature extraction methods that are used in this work. 

2    Samples 

HP 

LPHP 

LPLPLP LPLPHP 

j=2 

J-3 

i=jo 

Figure 2.12: DWT tree structure. 
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Figure 2.13: Complete wavelet packet decomposition tree structure. 
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Figure 2.14: One possible wavelet packet decomposition scheme. 

22 



III.      FEATURE EXTRACTION METHODS 

In any classification task, extracting relevant features is key to good performance. 

Ideally, the extracted features should reveal some unique non-redundant characteristics 

that are most effective in discriminating between classes. This chapter presents two major 

methods for feature extraction. First, we consider the Local Discriminant Bases (LDB) 

scheme. It is designed to find the best distinguishing local basis in the wavelet packet 

decomposition (WPD) tree using a user-specified discriminant criterion [17]. Next, we 

investigate the Power Method which uses power values associated with the WPD nodes 

as features [21]. 

A. LOCAL DISCRIMINANT BASES METHOD 

The Local Discriminant Bases (LDB) algorithm was originally proposed by Saito 

[17] in an effort to obtain a suitable basis in the WPD tree for feature extraction. It is 

similar in concept to the WP-based Best-Basis (BB) signal compression algorithm 

originally proposed by Wickerhauser [17,18] which selects a non-redundant wavelet basis 

from the entire WP decomposition. However, the LDB basis selection criterion is 

designed to extract a basis which best discriminates between signal classes, while the BB 

scheme identifies a basis which best compresses the information. Further details 

regarding the BB algorithm for compression applications may be found in [17, 26]. 

1.        Discriminant Measures 

Let us first briefly present the basis selection process involved in the BB scheme 

prior to discussing that of the LDB algorithm as they are conceptually related [17]. Both 
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methods first expand a signal into a redundant library of orthogonal bases using the 

wavelet packet decomposition (or local trigonometric bases). A non-redundant basis 

which minimizes a user-defined information cost is then identified in the full WPD tree 

using the divide-and-conquer algorithm. In the case of the BB scheme, the user-defined 

selection criterion evaluates each node compression capability by its entropy. Recall that 

the Shannon entropy is commonly used as it measures the flatness of an energy 

distribution (few significant coefficients will be present at a given node when the entropy 

is low) [18]. Such a criterion is useful in signal compression applications where the goal 

is to represent the signal information using the least number of parameters. However, this 

selection criterion is not well matched to classification applications where the goal is to 

select the nodes that will best discriminate, i.e., will be most effective in showing the 

differences between various signal classes. So the main difference between the BB and 

the LDB scheme is in the choice of the selection criterion, as the identical divide-and- 

conquer scheme is then used in both cases to extract a non-redundant basis from the 

packet decomposition. 

Various alternatives exist to choose discriminant measures. However, they all try 

to measure statistical distances among signal classes. Assume that A={a(/)},=1  and 

M 

B= {&(*')},^1 are tw0 non-negative sequences normalized to one, so that 2^a{i) = 1 and 

M 

^b(i) = 1. The discriminant measure function should measure how differently A and B 
i=i 
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are distributed. One of these functions is the relative entropy function (also known as the 

cross entropy, or the Kullback-Leibler Distance) and defined as: 

M a(i) 
/(A,B)=2>(01og77^, (3.1) 

7=1 0Vl) 

with the convention log(0)=-oo, log(x/0)= + oo [17]. 

Note that /(A ,B)   is always greater or equal to zero as long as A and B   are 

normalized to 1 [4]. However if A and B are not normalized to 1, the equation 

a(i) M 

/(A,B)=2>(0 
/=i 

log 
b(i) 

(3.2) 

can be used instead of Equation 3.1 to avoid getting negative relative entropy values. 

Note that /(A ,B)=0 if and only if A =B, while /(A ,B) gets large as A and B 

differ.  Let us consider a simple example to illustratre this concept. Let three sequences 

a(ri), b(ri) and c(ri) be defined as: 

a(n)=\sm(0.5%n)\, (3.3) 

b(n)=\sm(0.5nn)\+2, 

c(ra)=|sin(0.57W2)|+10, 

where «=0,1.-.31. 

Since these three sequences are not normalized to 1, the relative entropy function, 

defined in Equation 3.2, is used to measure how much a(n) differs from b(n) and c(n), 

leading to: 

I{a{n),b(n))=1.6'i39, 

I(a(n),c(n))=\ 6.6623. 
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It is clear that a(n) and c(n) differ more than a(n) and b{n) do, due to the larger DC 

level present in c(n). The only disadvantage of the relative entropy is the fact that it is not 

symmetric. However, symmetry is preferred in numerous applications [17]. Thus, the 

symmetric relative entropy function is defined as: 

7(A,B)=/(A,B)+/(B,A). (3.4) 

Other measures can also be used in the LDB method. Another possible measure is 

the norm-2 distance [17] defined as: 

M 

/(A ,B)=|A -B|g=2((0(O-b(i))2 . (3.5) 
i=i 

The efficiency of these distance measures varies as to the general behavior of the 

classification problem at hand. It is obvious that these two measures are defined for pair- 

wise comparisons, i.e., when there are only two classes. A different version of these 

measures must be employed with more than two classes. A potential solution relies on the 

pair-wise calculation of the distances defined as: 

C—1      c 

*=X   HJ(PU),PU)), (3-6) 
,=1    y=;+i 

where p(c) is the sequence belonging to class c, and C is the number of classes 
considered. 

2.        Energy Maps and Relative Entropy Calculations 

The first step in the LDB algorithm is the calculation of the time-frequency energy 

map of each signal class at hand [17]. Let {^■c)};='j be a set of training data signal vectors 

of length N that belongs to signal class c, and Nc be the number of signals in that signal 
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class. The wavelet-based normalized energy map, Ec, obtained for this signal class is 

defined as: 

£(*,we))2 
E

cU*,i)=J^-irc , (3.7) 

iikwir 
/=i 

where HfJJtj is one of the basis functions associated with the node (j,k). 

Recall that the scale number; corresponds to the depth of the tree decomposition 

and is defined in the range 0 to J, where 7<log2(iV). The index k corresponds to a 

specific frequency band obtained at scale ;', and is defined in the range 0 to V' -1. 

Finally, the index I corresponds to the time shift applied at the scale; and is defined in the 

range 0 to N2~J -1. Note that the normalization is crucial when the number of training 

signals in each signal class varies [17]. 

The second step in the LDB scheme is the computation of relative entropy values, 

denoted as R(j,k), associated with the node (j,k). For this purpose we apply Equation 3.6, 

which leads to: 

c-x      c 

*(i«=X I*K(^W)^^"-,,k2(M,C"2-,-,).      (3-8) cl=l   c2=/+I (_u '-° 

Note that the relative entropy function defined in Equation 3.2 is used in the 

computation of Equation 3.8 as neither {Ecl{j,k,l)}l^r'~' nor  {Ec2(j,k,l)}l^2~'~' are 

normalized sequences. 
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3.        The LDB Basis Selection Criterion 

The last step in the LDB scheme is the selection of the "best" discriminating basis 

among all possible bases given by the WP decomposition. The selection criterion uses the 

relative entropy values obtained with Equation 3.8. Recall that this basis selection is very 

similar to that of the BB algorithm, with the exception that the BB method minimizes the 

total Shannon entropy, while the LDB maximizes the total relative entropy value to select 

the suitable basis. Thus, the LDB selection method can be summarized as follows: 

1- Calculate the relative entropy values associated with each node according to 

Equation 3.7. 

2- Compare the relative entropy value of a parent node to that of the sum of its 

two children nodes by starting from the bottom of the decomposition tree and marking the 

one or ones with the largest relative entropy. 

3- Combine the highest relative entropy marked nodes into a basis, by starting 

from the top of the decomposition tree. 

An example will be given next, to clarify the LDB selection method. Consider 

Figure 3.1, which shows relative entropy values obtained at each node for a given WP 

decomposition. The LDB scheme compares relative entropy values of each parent and 

children nodes. The higher relative entropy value obtained between a parent and its 

children is assigned to the parent node, as shown between parentheses in Figure 3.2. 

Next, the parent or the children nodes with a higher relative entropy value is marked with 

an asterisk, as illustrated in Figure 3.2. Finally, the topmost nodes marked with asterisks 
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form the selected LDB that will be used in the feature extraction task, as shown in Figure 

3.3. 

Figure 3.1: WPD tree with relative entropy values assigned to each node. 

Figure 3.2: Result of step 2 in the LDB algorithm. 
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Figure 3.3: Selected nodes (Marked with (S)). 

Recall that the basis selection criterion is guaranteed to select a complete basis set 

out of possible 22 bases, where J< log2 (N), covering the full frequency axis. Further 

details regarding the LDB scheme may be found in Saito [17]. 

4.        Feature Selection 

Once the LDB decomposition is computed, the selected basis is applied to 

decompose the various signals belonging to known classes, and the resulting wavelet 

coefficients are used as feature parameter for inputs to train a classifier. However a large 

number of feature parameters exponentially increases the amount of data needed to train 

and validate the classifier. This problem, originally stated by Bellman, is known as the 

"curse of dimensionality," and will be considered further in later chapters [20]. Thus, it is 

usually preferable to use only a small subset of the WP nodes selected by the LDB 
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scheme. Selecting these specific coefficients is a difficult problem. Most schemes 

available are somewhat problem dependent and a general methodology that can be 

applied to every problem is still an area of open research. The feature selection method 

used in the LDB scheme relies on the relative entropy values of the basis functions *F; w 

in the selected LDB decomposition, which is denoted as R(j,k,l) and can be computed 

using 

Ä(M,/) = S   f<J({EAJ,k,l)},{Ec2U,k,l)}). (3.9) 
cl=l   c2=/+l 

Note that if the signal length is N then the total number of basis functions *F;. w 

in the selected LDB will be N as well, and every basis function will produce one 

coefficient for a given signal. The basis functions T. t, are ordered as to their relative 

entropy values R(j,k,l), and K<N of them are selected to be used in the feature 

extraction task. 

5.        Examples 

Let us consider two examples to illustrate the capabilities of the LDB method in 

extracting features. The first example consists of two signal classes while the second one 

consists of four signal classes. 

a)        Two Signals Class Example 

We first consider linear and quadratic chirp signals of length N=32=25. 

Variations in each signal are obtained by introducing some small random variation in the 
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chirp specific frequencies. Thus, the general expression for signals belonging to the linear 

chirp class is given by: 

xL (n) = sin( — ), (3.10) 

where A/ is a uniform random variable U[0,0.1] and n=0,l, ,31. 

The general expression for the signals belonging to the quadratic chirp 

class is given by: 

1024 

.   7t(0.217 + A/ W 
xQ(n) = sin( 77^; ), (3.11) 

where A/ is a uniform random variable U[0,0.07] and n=0,1, ,31. 

Figure 3.4 shows the time domain representations obtained for noise-free 

linear and quadratic chirp signals. Finally, additive white Gaussian noise with SNR=-5 

dB is added to each signal. The LDB scheme was implemented using 40 signal trials for 

each class. Five noisy sample waveforms for each signal class are shown in Figure 3.5. 

The LDB decomposition algorithm leads to the selection of nodes (2,0), (2,1), (3,4), (3,5), 

(5,24), (5,25), (5,26), (5,27) and (3,7). Relative entropy values obtained at each of these 

nodes are given in Table 3.1. The resulting frequency partitioning obtained with the LDB 

scheme is shown in Figure 3.6. Note that, this time-frequency tiling shows the 32 selected 

bases covers the whole frequency axis. However as mentioned earlier, using only a subset 

of the features selected is better for the classification step. The feature subset was selected 

by ordering the basis functions by decreasing entropy values, and choosing the top five. 

These five top suitable basis functions selected belong to the two top nodes in the tree, 

nodes (2,0) and (2,1), and are shown in Figure 3.7. 
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Figure 3.4: Time domain representations of linear and quadratic chirp signals. 
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Figure 3.5: Five noisy trials for linear and quadratic chirp signals, used in example 5a; 
SNR=-5dB. 
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Node number (2,0) (2,1) (3,4) (3,5) (5,24) (5,25) (5,26) (5,27) (3,7) Total 

R.E. 

Relative Entropy 

(R.E.) 

0.2 0.12 0.07 0.03 0.014 0.005 0.001 0.02 0.12 1.064 

Table 3.1: Relative entropy values obtained at the LDB selected nodes for example 5a. 

X X 
X X X 

XX X X 

Figure 3.6: LDB time-frequency partitioning for example 5a. Selected frequency bands 
are indicated with "X". 
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Figure 3.7: Top 5 LDB basis functions obtained for example 5a. 
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b)       Four Signals Class Example 

Next, four signal classes are considered: linear and quadratic chirps 

(already used in the previous example), and low and high frequency sinusoidal signals. 

The signal length is kept at M=32=25 samples. As in the previous example, a random 

variability in the high and low sinusoidal signals is introduced by adding a random 

component to the signal carrier frequency. Thus, the high and low frequency sine 

expressions are given by: 

xH (n) = sin(7Z»(0.7 + A/,)),   xL (n) = sin(7m(0.2 + A/2), (3.12) 

where A/; and A/2 are uniform random variables defined as U[0,0.2] and n=0,l, ,31. 

Figure 3.8 shows the time domain representations obtained for noise-free 

high and low frequency sine signals. Additive white Gaussian noise is also added to the 

sequences with resulting SNR=-5 dB. Five noisy high frequency sine and low frequency 

sine signal trials are shown in Figure 3.9. Forty training signals per signal class are used 

in the experiment, corresponding to a total of 160 signals. The LDB scheme leads to a 

frequency partitioning based on the following selected nodes: (2,0), (3,2), (3,3), (3,4), 

(3,5), (4,12), (5,26), (5,27), (5,28), (5,29) and (4,15). The frequency partitioning obtained 

is shown in Figure 3.10. Table 3.2 lists the relative entropy values obtained for the 

selected nodes. Once again it is obvious that these selected nodes cover the entire 

frequency axis. At this point the 32 basis functions were ordered in decreasing relative 

entropy values, and the top five selected to be used in a feature extraction task. The top 5 

basis functions are plotted in Figure 3.11. 
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Figure 3.8: Time domain representations of high and low frequency sine signals. 

High Sine Low Sine 

5 

O 

-5< 
5 

O 

-5< 
s 
o 

-5( 
5 

o 

-5< 
5 

O 

-5. 

10 20 30 40 

-^/N/VWW^ 

10 20 30 40 

10 20 30 40 

10 20 30 40 

AA^A^ 
10 20 30 4 O 

10 20 30 4 O 

A^-AVT^V 
10 20 30 4 0 

0 10 20 30 40 
time [number of samples] 

O 

-5( 
5 

O 

-s. 

10 20 30 40 

10 20 30 40 
time [number of samples] 

Figure 3.9: Five noisy trials for high and low frequency sine signals, used in example 5b; 

SNR=-5dB. 
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Node Numbers (4,15) (5,29) (5,28) (5,27) (5,26) (4,12) (3,5) (3,4) (3,3) (3,2) (2,0) Total 

R.E. 

Relative 
Entropy 

(R.E.) 

0.07 0.05 0.1 0.07 0.06 0.31 0.31 0.27 0.28 0.46 0.7 2.7 

Table 3.2: Relative entropy values obtained at the LDB selected nodes for example 5b. 

X 

X X X X 

X X 

31  X S X 

Figure 3.10: LDB time-frequency partitioning for example 5b. Selected frequency 
bands are indicated with "X". 
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Figure 3.11: Top 5 LDB basis functions obtained for example 5b. 
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6.        LDB Algorithm Drawbacks 

a)       Large Class Size 

The first problem observed in the LDB based feature extraction tasks is the 

probable loss of performance when the number of signal classes is more than two. There 

may be two reasons to this particular problem: 1) a basis that discriminates all the signal 

classes is not guaranteed to exist and 2) even though such a basis may exist, the LDB 

scheme is not guaranteed to find it. Obviously, there is nothing that one can do in the first 

case. However, there may be hope in the second situation. Recall that the cost function 

used for measuring dissimilarities between classes averages pair-wise distances between 

the classes considered. For example, when dealing with three classes, the total relative 

entropy R(j,k) expression obtained at node (j,k) becomes: 

V       X-" r -|/=AT2"'-1    r -\l=N2-J-l 

*(/.*>£   XJr(Ri(M.0}W)       ,{Ec2U,kJ)}!=0       )• (3.13) 

Thus, R(j,k) averages out the 3 pair-wise relative entropy values obtained 

between signal classes 1, 2, and 3. Assume that one of the nodes is very good at 

discriminating signal classes 1 and 2 (that is, the relative entropy for these two signal 

classes is high), but the same node is poor at discriminating signal classes 1 and 3 (that is, 

the relative entropy value for these two signal classes is low). However, this specific node 

may still be selected, because the double summation present in the total entropy formula 

in Equation 3.13 averages out the pair-wise contributions. A potential "better 

discriminating" node might be one which is not as good in discriminating signal classes 1 
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and 2, but which is better in discriminating 1 and 3, that is, this node may be equally good 

in discriminating these three signal classes. 

We further illustrate this problem with the simple 4 signal classes example 

considered earlier in Section 5b. Recall that 11 nodes were selected in the LDB selection 

implementation step. Pairwise entropy values obtained at the selected node (2,0), plotted 

in Figure 3.12, reveal the problem. Recall that pair-wise entropy calculations include 

relative entropies obtained for class pairs {1,2}, {1,3}, {1,4}, {2,3}, {2,4} and {3,4}. 

Figure 3.12 shows that the relative entropy value obtained between the first and second 

signal classes (equal to 0.25) is significantly higher than that obtained for the other pair- 

wise class computations, meaning the features found using this node will be very 

effective in differentiating between classes 1 and 2. However, it also shows that node 

(2,0) is not good at discriminating between classes 3 and 4, as the relative entropy 

between third and fourth signal classes is quite a bit lower than those obtained with the 

other pair-wise computations. Note that information regarding this variability in the 

quality of the discrimination capability will be lost after averaging all pair-wise 

contributions. 

Another example of this particular problem is visible in Figure 3.13 which 

plots relative entropy values obtained at the parent node (2,1), and the sum of entropy 

values obtained at its two children nodes (3,2) and (3,3). Figure 3.13b shows that the 

children nodes are quite good at discriminating signal classes {2,4} and {3,4}, but poorer 

at discriminating signal classes {2,3}, due to the variations in the corresponding relative 

entropy values obtained for the given pair-wise comparisons. Figure 3.13a shows that the 
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magnitudes of the entropy values obtained at the node (2,1) do not vary as much, meaning 

that the features selected for this node will be "equally good" to discriminate between all 

signal pairs. Therefore, given that the magnitude of the relative entropy values obtained at 

the parent or the sum of its children are similar, there is the likelihood that node (2,1) 

would be better suited to discriminate between the various classes than the children nodes 

are, where more variability in discriminant quality is visible. However, recall that the cost 

function designed to choose between parent and children node averages out all pair-wise 

contributions, and thus, disregards the effects due to unbalanced pair-wise contributions. 

In the example shown in Figure 3.13, the LDB selection algorithm selects the children 

nodes (3,2) and (3,3) as their total relative entropy nodes is higher than that of the parent 

node. 

One possible solution to this problem may be to avoid averaging out the 

various pair-wise contributions altogether, as is done with the original LDB selection 

scheme in Equation 3.6. A proposed alternative might be to take into consideration the 

consistency with which the features obtained at a given node are at discriminating 

between class pairs. Thus, ideally, the pair-wise relative entropy values obtained at a 

given node should be: 1) high and 2) similar in magnitude, meaning the features are 

equally good to discriminate between all classes taken pair-wise. Thus, the distribution of 

relative entropy values obtained at a given node should be as high and flat as possible. 

One possible candidate to measure the flatness of a data distribution is the Shannon 

Entropy (SE) function defined as [18]: 
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Q(x)=Xk-fiognr. (3.14) 
Kl 

The SE function has a high value when the data sequence x has a flat 

distribution. The new node selection method can be described briefly as: 

Step 1- Energy maps of each signal classes are calculated, as in the 

original LDB selection method. 

Step 2- Pair-wise relative entropy values are computed at each node, and 

the Shannon entropy function computed to evaluate the flatness of the distribution of 

pair-wise contributions. The resulting SE value is placed at each node. 

Step 3- Use the divide-and-conquer algorithm to find the best non- 

redundant basis which maximize the total SE value. 

Now let's apply this new SE selection criterion to the previous node 

selection problem described in Example 5b, and Figure 3.13. Recall that even though 

node (2,1) looked better than its children nodes in discriminating between class pairs 

overall, the original LDB selection algorithm chose the children nodes due to the higher 

sum of their relative entropy value. Table 3.3 lists the Shannon entropy values obtained at 

the parent node (2,1) and its two children nodes (3,2) and (3,3). Results show that node 

(2,1) has a higher SE value then that obtained by summing the contributions obtained by 

its two children nodes. Therefore, node (2,1) would have been chosen. Unfortunately this 

algorithm also has its own problems because it doesn't take into account the actual 

magnitudes of the pair-wise relative entropies. Thus, a flat relative entropy distribution 

may be selected even though the values are all quite small, meaning the features obtained 
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at that node are equally bad in discriminating two classes at a time. Thus, we would need 

to define some type of lower bound on the pair-wise relative entropy values and take it 

into account in addition to comparing parent and children Shannon entropy values. 

However, at this time a successful combination of these two criteria which improves the 

classification rate has not been isolated. 

Finally, the user needs to keep in mind that judging a selected LDB basis 

on the behavior of only a single node may also be misleading. A selected node may be 

quite poor at discriminating two signal classes, but the other selected nodes may 

compensate for this problem to a certain extent. 

Pair-wise R.E. obtained for node (2,0) 
0.25M 1                i 
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Figure 3.12: Pair-wise relative entropy values of node (2,0). 
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Figure 3.13: (a) Relative entropies of node (2,1), (b) Total Relative entropies of node 
(3,2) and (3,3). 

Node Numbers (3,2) (3,3) Total (2,1) 

Shannon Entropy. 0.089 0.036 0.125 0.134 

Table 3.3: Shannon Entropy values of various nodes. 

b)       Dimension Reduction Problems 

Another potential  problem of the LDB  algorithm comes from the 

dimension reduction process. Note that using all the basis functions obtained from the 

LDB scheme to define input features to a classifier may result in a large feature set, and 

make the classification task more difficult. As mentioned earlier, the number of features 

should be kept as small as possible. Therefore, one needs to select a subset of the LDB 
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basis functions which contain only the most relevant information. The selection process 

originally proposed by Saito selects the first K basis functions with the highest relative 

entropy values [17]. However as discussed earlier, when the number of classes is high 

(say larger than 8 or 9), the averaging process present in the computation of the relative 

entropy values, may lead to the selection of nodes which are poor in discriminating some 

of the classes pair-wise. In addition, selecting only a subset of the basis functions may 

worsen the classification performance by preventing some of the non-selected basis 

functions to compensate for selected ones with poor isolated pair-wise discrimination 

capabilities. 

Figure 3.14 illustrates this problem by plotting the pair-wise relative 

entropy values obtained for the top five basis functions, determined by the original LDB 

scheme, in Example 5b, note that JC axis labels 1, 2, 3, 4, 5 and 6 correspond to pair-wise 

signal classes {1,2},{1,3},{1,4},{2,3},{2,4} and {3,4} successively. It is clear that most 

of the basis functions have difficulties in discriminating classes 1 and 3, that is, the 

features obtained using these specific basis functions will be very similar for the first and 

third signal classes. As a result, this poor discrimination quality will make the 

classification task more difficult to differentiate between classes 1 and 3. 
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Figure 3.14: Pair-wise relative entropy values of some selected basis functions in example 
5b. Basis function numbers are at the top of each plot. 

c)        Synchronization Issues 

Another problem with the LDB comes from the fact that wavelet packet 

decomposition is shift-variant. As a result, a slight time shift in the signal may cause 

drastic changes in the wavelet coefficients. Saito addressed this issue by introducing cycle 

spinning [25], and showed some improvements in the classification performances. 

Further details may be found at the end of Chapter IE. 
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7.        Summary 

In this section, we showed that the cost function used to measure dissimilarities 

between classes in the original LDB basis selection process becomes less and less 

meaningful as the number of classes increases, and illustrated what some of the main 

resulting problems are with a few basic examples. In addition, we showed that this.cost 

function may further impair the extraction of a small set of relevant features, and 

ultimately worsen the classification performances. We proposed an alternate basis 

selection criterion based on measuring the flatness of the pair-wise relative entropy value 

distribution and showed that it could potentially improve results, if used in combination 

with a lower bound on the Shannon entropy function. 

B.       POWER METHOD 

As mentioned earlier, one of the main drawbacks with the LDB scheme is the fact 

that it requires some time-domain signal synchronization prior to the decomposition step 

to insure that slightly shifted signals belonging to the same class will be categorized as 

such. Some additional robustness in the classification process (with respect to the time 

shifting issue) can be obtained by considering the average energy obtained at each node, 

instead of the individual wavelet coefficients. In this section we consider two such 

energy-based approaches after defining the node-based features considered. 

1.        Energy Maps And Feature Extraction 

Consider a vector x of length N. The average energy (i.e., power) contained in x is 

given as: 
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1  _ 
N 

(3.15) 

The full WPD of the signal x of length N leads to a spectral partitioning with a 

log2(AD 

total number of nodes (i.e., frequency bands) TNF =  ^2J.  The power contained in 
7=0 

each frequency band (i.e., at each node) can then be computed using Equation 3.15. The 

power obtained at the node (d,b) in the WPD tree will be denoted as v(d,b), which leads 

to the power map of a given signal, as illustrated in Figure 3.15. 

Scale 
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2 
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P(3,0) P(3,l) P(3,2) P(3,3) P(3,4) P(3,5) P(3,6) p(3,7) 

Figure 3.15: Power values associated with each node of the WPD. 

Let us consider the following example to illustrate the power mapping concept. 

Assume that a given signal x(n) is defined as: 

x(n) = sin(O.lror), n = 0,1,2, 255. (3.16) 

The WPD decomposition leads to the power map shown in Figure 3.16. Note that, high 

energy bins are represented in dark colored areas while light areas represent the low 

energy bins. Recall that average energy values show the power of a given signal in the 

frequency range of the associated node. Thus, the power centered around the frequency 
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0.1 Hz is more highly focused at high scales, which correspond to narrower filter bands. 

The basic idea behind the power method is to consider the average energy values as 

features. Note that there will be V number of average energy values at the scale j due to 

the WPD tree structure. For example, p(0,0) represents the first average energy feature. 

As scale 0 represents the time domain signal, p(0,0) is also the power of the given signal. 

Note however that this feature set contains much redundant information, as a 

parent node and its two children nodes carry the same frequency information. Thus, 

selecting only non-redundant information becomes essential when reducing the number of 

feature parameters. Four feature selection schemes are considered next. 

Power Map 

0.3 0.4 0.5 0.6 0.7 
Normalized Frequency 

0.8        0.9 

Figure 3.16: Power map of a sine signal. 
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2.        Feature Selection 

Four feature selection approaches are considered to reduce the dimensionality of 

the classifier. The first one, originally proposed by Learned and Willsky [21], uses the 

SVD information obtained from the power mapping, the second one selects the most 

within-a-class consistent features, the third one selects the most-discriminating features 

and the last one uses the same nodes that the LDB feature extraction method selects for 

feature extraction task. 

First, following Learned and Willsky [21], let.us define the "power matrix" which 

will be used in the derivations. Consider the vector p(n,t) which contains all power 

values of the nth signal in the signal class t. The power matrix Pt of the signal class t is 

given as [21]: 

Pt =[p(l,t),p(_2,t),p(3,t), p(Nt,t)], (3.17) 

where Nt is the number of training signals in the signal class t. 

a)        Learned and Willsky 's (LW) Feature Extraction Scheme 

Learned and Willsky's scheme is a two-step process that searches for the 

dominant power nodes that lead to the "best" separation between classes. 

(1) Dominant singular vector identification. The first 

step identifies the dominant left singular vector (i.e., associated with the largest singular 

value) of each single class power matrix Pt. Once identified, the dominant singular 

vector is used to represent the signal class t. Note that a large gap between the first two 

49 



Singular values indicates that the dominant singular value might be sufficient in 

representing the information contained in the class. Thus, Learned and Willsky 

investigated the presence of a dominant singular vector by evaluating the following 

singular value difference ratio: 

Aat = Gtl'a'\ (3.18) 

where Gt,, and Gt2 are respectively the largest and second largest singular values of the 

matrix Pt defined from the signal class t. The ratio Ac, is defined between 0 and 1, and 

a value close to 1 denotes the existence of a dominant singular value and associated 

singular vector. 

(2) Node Selection. Once each class dominant singular 

vector is identified, Learned and Willsky proposed to identify the nodes that contain 

significant information for a given class by selecting the components of the dominant 

singular vector that are within a given percentage of the maximum component. Thus, 

"significant node" locations are obtained by selecting those corresponding to the singular 

vector coordinates which lie within 20% of the maximum singular vector component. The 

full feature set is then obtained by combining significant feature sets obtained for all 

given classes. 

Finally, non-redundant information is kept by insuring that 

the full feature set does not contain both parent and children nodes. When such a case 

occurs, Learned and Willsky chose to keep only the parent nodes, and disregarded any 
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children nodes.  This decision insures that the size of the full feature set is kept small, 

while it provides good inter-class separation. 

(3) Example. We apply the Learned and Willsky scheme 

to a two-signal class problem next. The signals are obtained from the Wavelab.700 

package [7]. The first signal (called "MishMash" in Wavelab.700) is a combination of 

high frequency sine, linear, and quadratic chirps and defined as: 

ft«3 Tin2 

x(n) = sin(^ä-) + sin(0.6902roi) + sin(—), (3.19) 

where N is the length of the signal and n=l, 2,3, N. 

The second signal (called "Doppler") is defined as: 

n        n 
*(n) = J-(l--)sin 

2.1A 

$+«* 

(3.20) 

where N is the length of the signal and n=l,2,3, N. 

Figure 3.17 plots the signals. A signal length equal to 32 

(=25) was considered. Additive white gaussian noise was added to get an SNR=10dB. 

Forty training signals were created per class. Figure 3.18 plots 5 trials of each resulting 

noisy signal. Note that, the size of the power matrix for each signal class is 63x40, as the 

log2(32) 

total number of nodes is 63 ( ]^2;) for a signal length of 32, and there are 40 training 

signals per class. The S VD of the power matrix obtained for each class is computed next. 

Figure 3.19 plots the power map obtained for one sample trial in each signal class. The 

singular values obtained for each signal class are shown in Figure 3.20. Next, difference 
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ratios Aa, were calculated using Equation 3.18 to evaluate whether one can find a 

dominant singular vector for each class. The difference ratios for the "Mishmash" and 

"Doppler" signal classes are computed using Equation 3.18 and found respectively equal 

to be 0.87 and 0.84. Note that these relatively high values indicate that one may be sure 

about the existence of a "true" dominant singular vector. Figure 3.21 plots the dominant 

singular vectors obtained for the two signal classes. 

Next, the significant nodes for each signal class are found 

by selecting the singular vector coordinates which are within 20% of the maximum 

singular vector coordinate value. Figure 3.21 shows that values at indexes 35 and 38 are 

significant for the Doppler class, and the value at index 53 is significant for the 

Mishmash class. These indexes respectively correspond to nodes (5,3), (5,6) and (5,21) in 

the WPD tree. The corresponding node locations in the WPD tree are shown in Figure 

3.22. Therefore, the full feature set is selected as the combination of both class-specific 

features, and shown in Figure 3.22. Note that there is no redundancy of information 

contained in the feature set, as it doesn't contain both parents and children. Thus, all 

three nodes will be used as features parameters for inputs to a classifier. 

Figure 3.23 plots the training data feature set in 3D and 

Figure 3.24 shows its three projections onto the three main planes. In general, good 

classification performance is expected when the feature sets are contained in 

nonoverlapping clusters. Figures 3.23 and 3.24 show that features associated with each 

class are somewhat clustered, they do not seem to overlap. As a result, one would expect 

relatively good classification performances. 
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(4) Potential problems. The main drawback behind this 

feature selection scheme is that it relies on the existence of a dominant singular vector 

for each signal class considered. However, in some cases, the gap between the first two 

largest singular values may be too small to have a dominant singular vector. In such a 

case, the validity of the Learned and Willsky's approach becomes somewhat 

questionable. For example, this situation could occur in low SNR environments, or when 

the properties of the signals change significantly from trial to trial. 

Let us illustrate some of the drawbacks with a simple 

example. An example will be given to prove this situation. The two-signal class 

(Mishmash/Doppler) example considered earlier was implemented for different SNR 

values and the corresponding difference ratios Ac, are shown in Table 3.4. Reduced 

feature sets for a SNR of -10 dB are plotted in Figures 3.25 and 3.26. Results show that as 

the SNR decreases, the difference ratio decreases as well, endangering the feature 

selection approach of this method. In addition, the features associated with each signal 

class become more overlapped, thereby decreasing the likelihood of a good classification 

performance. 

Further, note that the properties of the noise-free training 

signals were not changed in this example. In practice, one cannot usually expect such an 

ideal behavior, as some in-class variation will be observed. As a result, we consider a 

two-signal class case: high and low frequency sine. Additive white gaussian noise was 

added to the signals for an SNR level equal to 0 dB. Forty signals per class were used to 

generate the power matrices associated with each signal class, and the difference ratios 
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obtained were 0.8097 and 0.8175. Next, the digital frequencies are changed 10% 

randomly around the carrier frequency to simulate a change in the characteristics of the 

signals and the difference ratios were 0.4034 and 0.3899. At this point, it becomes 

difficult to justify the existence of a dominant singular vector to select the useful 

features. 

Finally note that: 1) selecting the nodes with the highest 

power values may not guarantee that the reduced feature sets will be well clustered and 

won't overlap, in such a case reducing the feature set may result in further information 

loss; and 2) this scheme assumes that the nodes with the highest power carry the most 

discriminant information, which may not necessarily be true. 

SNR 20db lOdb Odb -lOdb 

Ao, 0.9587 0.87 0.6787 0.601 

AG2 0.9607 0.84 0.6579 0.62 

Table 3.4: Differ« nice ratios Ac, foi r different SNR va ues. 
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Figure 3.17: Noise free "Doppler" and "Mishmash" signals. After Ref. [7]. 
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Figure 3.18: Five noisy trials for "Doppler" and "Mishmash" signals ; SNR=0dB. 
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Figure 3.19: Power maps of Mishmash (a) and Doppler (b) signals. 
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Figure 3.20: Singular values for Mishmash and Doppler classes. 
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Figure 3.21: Dominant singular vectors of two signal classes. 

Figure 3.22 Selected nodes in the WPD scheme. 
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Figure 3.23: Reduced feature set in 3D, 2 signal-class example,SNR=10dB; LW feature 
extraction scheme. 
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Figure 3.24: Three projections of Figure 3.23. 
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Reduced Feature set SNR=-10 dB 
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Figure 3.25: Reduced feature set in 3D, 2 signal-class example, SNR=-10dB; LW feature 
extraction scheme. 
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Figure 3.26: Three projections of Figure 3.25. 
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b)        Most Consistent Feature Extraction Scheme 

The scheme presented next was considered to avoid the problem due to the 

estimation of a dominant singular vector. Here, we select as "reliable" in-class features 

those which vary the least within each class. Thus, variances across the rows of the power 

matrix Pt of a signal class t are calculated and ordered in decreasing order (recall that 

each row corresponds to the same node location for all training signals of a given class). 

Note that the nodes with the most consistent information (i.e., those with similar power 

from signal trial to trial) are those with the smallest variances. These nodes will be those 

selected as they are the "most consistent" features of a given class. Thus, we select Q 

nodes with the smallest variances. 

We illustrate this scheme with the two-signal class (MishMash/Doppler) 

example considered earlier. Variances across the rows of each signal class power matrix 

were calculated, and the top 5 least varying node indexes selected for each signal class. 

Indexes [2, 3, 6, 7, 15] and [2, 3, 5, 7, 11] are respectively selected for the classes 

MishMash and Doppler. The resulting node indexes used in the feature extraction task are 

[2, 3, 5, 6, 7, 11, 15] as indexes 2, 3, and 7 are common to both classes. These node 

indexes correspond to the nodes (1,0), (1,1), (2,1), (2,2), (2,3), (3,3) and (3,7) 

respectively, and their locations are shown in Figure 3.27. Note that the parent-children 

node situation is not taken into account in this method. The problem with this procedure 

comes from the fact that the actual magnitudes of the discriminant values are not taken 
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into account in the selection process. Thus, the method may select nodes with small 

discriminant values consistent over all classes considered. 

Figure 3.27: Subspaces selected by the most consistent feature extraction scheme. 

c)        Most Discriminating Nodes Feature Extraction Scheme 

The method considered here is very similar to the LDB feature reduction 

scheme where the basis functions are selected according to their relative entropy values. 

One average feature set is first identified for each class. Next, relative entropy values for 

each node are calculated using Equation 3.8. Last, the nodes with high relative entropy, 

i.e., those which supply discriminating features, are selected. 

This scheme is illustrated with the two-signal class example used earlier 

corresponding to the Mishmash and Doppler signal classes with SNR=10dB. First, 

averaged feature sets obtained for each signal class are calculated and shown in Figure 

3.28. Then the relative entropy values for all 63 nodes are calculated. The top three nodes 

are (5,21), (4,10), (5,6), and the corresponding time frequency partitionings are shown in 
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Figure 3.29. Note that in this method, we do not care if a parent-children node situation 

exists, and the number of top nodes selected is left to the user. The reduced feature set is 

plotted in Figures 3.30 and 3.31. Note that the two signal classes are clustered and do not 

overlap, thus a good performance can be expected. 

However, note that this method suffers from the same potential drawbacks 

as the LDB scheme does when the number of classes is larger than two. It is also based on 

the averaged pair-wise relative entropy value, as given in Equation 3.5, which 

significance becomes more and more questionable as the number of classes increases. 
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70 

Figure 3.28: Average feature sets for Mishmash and Doppler signals. Most discriminant 
nodes feature extraction scheme. SNR=10 dB. 
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Figure 3.29: Subspaces selected by the most discriminating dimension reduction scheme. 

Figure 3.30: Reduced feature set in 3D, 2 signal-class example, SNR=10dB; Most 
Discriminating feature extraction scheme. 
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Figure 3.31: Three projections obtained from the 3D reduced feature set given in Figure 
3.30. 

d)       LDB Based Dimension Reduction Scheme 

This dimension reduction scheme simply considers using the power 

features associated with the nodes selected by the LDB feature extraction method. First, 

the LDB feature extraction method is used to extract a basis which best discriminates 

between signal classes. Next, the WP nodes associated with the selected basis are used to 

extract the power features from each given signal. The only drawback of this scheme is 

the fact that the number of features this scheme selects depends on the number of nodes 

that constitute the selected LDB basis, meaning that the number of nodes selected in this 

scheme may be higher than expected. 
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3. General Problems With The Power Method 

The Power method is based on power quantities defined at each node. This 

averaging operation results in loss of time resolution, which may be a problem when 

precise timing information is needed to separate otherwise similar signal classes. 

However, this problem can be alleviated by defining short-time energy quantities at each 

node to re-introduce some timing information [21]. 

C.       TIME  SHIFTING ISSUES WITH LDB AND POWER METHODS 

Recall that the Power method was found to be more robust to time-shift problems 

encountered in classification tasks than the LDB method is. We will illustrate this 

behavior by comparing each set of coefficients obtained from a given signal with Power 

and LDB schemes and the set of shifted coefficients obtained from a time-shifted version 

of the signal. The signal selected for this simple experiment is a linear chirp signal of 

length 128 that is zero padded with 256 zeros. 

The Power and LDB coefficients are computed for the chirp, with a maximum 

scale decomposition of 7. The chirp is then successively time-shifted by 1 to 60 sample 

numbers, and the Power and LDB schemes used to computed new sets of coefficients for 

each time shifted versions. 

Next, the nodes shown in Figure 3.32 are selected as if they were obtained using 

the LDB method. Figures 3.33 and 3.34 plot the squared errors obtained between the 

coefficients of the original signal and the shifted coefficients of the time-shifted signal for 
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LDB and Power method respectively, for successive time shifts between 1 and 60 

samples. 

Results show that as the shift increases, the difference between the original 

coefficients and the shifted coefficients increases when using the LDB scheme, while it 

remains much smaller when using the Power Method. This result is to be expected as 

additional time robustness is added in the Power method with the averaging operation 

conducted at each selected node, while no such averaging is done with the LDB scheme. 

Next, Chapter-IV presents the two classification tools considered in this work: 

Classification Trees (CT) and Back-propagation Neural Networks (BP). 

Figure 3.32: Subspace selected for showing the effects of time shifts in LDB method. 
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IV.      CLASSIFICATION TOOLS 

In this chapter, we first review two pattern classification types considered in our 

study: Classification Trees (CT) and Back-propagation Neural Networks (BP NN). Next, 

we discuss how feature clustering and overlapping may affect classifier performances. 

A.       CLASSIFICATION TREES 

1.        Tree Structure 

Tree-based methods have been used extensively over a long period of time in 

some areas such as botany, social sciences, and medical diagnosis, while only more 

recently in others, such as statistics and pattern recognition [17, 28]. A classification tree 

can be viewed as a set of if-else binary decision rules which partition the feature space 

into non-overlapping rectangular regions corresponding to the tree leaves. Numerous tree 

decision schemes have been developed over the years, however, they all are variations of 

the same type of algorithm which uses a top-down search through all possible solutions 

[27]. In this work we consider only one type of decision trees, classification and 

regression trees (CART) originally proposed by Breiman [28], and thus restrict our 

discussions to this structure only. Further details on decision trees may be found in 

[28,30]. 

CART are binary trees designed to assign a class label to a given feature vector. 

Let us consider a simple example to illustrate the concept behind CART. Assume that a 

feature vector of length N is equal to X= [xt)    . For example, this set of features may 
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have been obtained by the LDB or the Power schemes mentioned in the previous chapter. 

The CART scheme produces a tree based on individual features presented to the tree. For 

example, the first split (i.e., at the top of the tree) will be determined by a question like: 

"is xi less then a given threshold?" Such a question will result in a partitioning of the 

feature sets and creation of a left and a right leaf to the classification tree. At this point, 

each of the child branches may be further split according to new decision rules. By 

convention, all nodes with children are called internal nodes. This splitting process may 

be repeated until a node without any children is reached, or the number of feature vectors 

belonging- to the children nodes falls below a user-specified value. This final node is 

called a terminal node. Feature vectors belonging to that final node are then assigned a 

class label during testing. By convention, internal nodes are shown as circles and terminal 

nodes are shown as rectangular boxes, as illustrated in Figure 4.1. Notice that CART is 

called a binary decision tree, because every internal node has only two children nodes. 

Trees with more than two children per node have also been proposed, however, binary 

trees are the most often used because they are simple and can be easily built using a given 

training data set. 

The key point in the creation of the CT is the selection of good decision (or 

splitting) rules at every internal node. Thus, this issue will be discussed next. 
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Figure 4.1: Sample Classification tree. 

2.        Tree Growing 

As mentioned earlier, the key point in the tree construction lies in the definition of 

specific decision rules. The main idea behind this process is to identify the "best" 

question, or decision rule, for each split, where "best" should lead to the following 

resulting behavior: 

For all possible feature sets in the training set, identify the feature (i.e., xi) and the 

decision rule threshold value which will lead to two children nodes with purer features, 

where "purer" means the number of feature vectors belonging to one signal class clearly 

outnumbers the others. 

As a result, an index of impurity is defined so that it has a minimum at zero when 

all the given feature vectors belong to the same single class (the purest case), and reaches 

a maximum when the feature vectors equally belong to different signal classes (the worst 
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case). For example, let us assume that there are J signal classes and the probability that a 

j 

given feature set belongs to signal class 7* is denoted as p}, then ^ Pj = 1. The impurity 
1=1 

measure of a node t is expressed as : 

E(t) = a>(p1,p2tp3,...pj). (4.1) 

For practical purposes pi is calculated using the equation: 

N, 
p.= — , (4-2) 

where Nj is the number of feature sets that belongs to signal class j and N is the total 

number of feature vectors at any internal node. 

The Impurity function <3> should satisfy [27]: 

$ (1/j, 1/j, 1/j, l/j)=maximum, (4.3) 

&(1,0,..0)= 0(0,1,0,-.-0)=... <D(0,0....1)=0. 

One possible candidate for the function O is the entropy function defined as: 
j 

®(Pl,P2>P3>-Pj) = -2, Pj ln Pj. (4-4) 

Once the impurity function is selected, for each given node, the scheme considers 

individual  decision rules  for each featurext   contained in  the feature  set, i.e., it 

investigates decision rules of the type: is "*,< threshold ?" satisfied. 

Obviously, the specific choice of threshold values used in the decision rules will 

have a clear impact on the overall tree structure. Thus, for each feature, the scheme 

iteratively investigates what the gain in purity (defined below) is for successive threshold 

values covering the full range of each feature parameter. For example, the S+ [38] tree 
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software program which was used in this study to implement CART, has a default option 

which covers the complete range of each feature parameter contained in the feature 

vectors in given increment of the given range. 

At this point, the scheme investigates whether the 2 resulting children nodes 

obtained with a given decision rule are purer than their parent node. The cost reduction 

value, that measures the purity gained after a specific decision rule is implemented, is 

computed using the formula: 

AE(x? , 0 = E(t) - plE{tl) - pr E(tr), (4.5) 

where s denotes the decision rule, and pl and pr are the percentage of trial cases in node 

t that belong to the left or right children node (i.e., branch) after the splitting rule s is 

invoked. 

Therefore, at a given tree node, cost reduction values are successively computed 

for each possible splitting rule s invoked on each feature parameter xt, and the decision 

rule with the highest cost reduction value selected for that leaf. This selection means that 

the decision rule chosen at a given node divides the feature set so that the children nodes 

are purer than their parent node. This process is repeated for successive children nodes 

until a pre-determined purity level is reached at any node. The node then obtained is 

called a terminal node, and a class label assigned to it. The class assignment is based on 

the class i with the highest probability px obtained at that given node. 
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Let us illustrate these concepts on a simple example. Let us assume that 25 feature 

sets are used to construct a classification tree to classify 5 different classes. Further, let us 

assume that after growing a CT, a final node has the following class distribution: 

16 feature sets belong to class 1, 

2 feature sets belong to class 2, 

3 feature sets belong to class 3, 

1 feature sets belong to class 4, 

3 feature sets belong to class 5. 

Thus, the resulting probabilities for each signal class obtained at this node are: 

16/25, 2/25, 3/25, 1/25, and 3/25. As a result, the node is labeled as class 1. At testing, 

feature sets are assigned to a given class, and these probability quantities allow the user to 

measure the confidence with which the testing sets are classified in a given class. For 

example, should a test signal be assigned to node 1 during testing, one can say that 

belongs that class with a probability of 16/25. Note that this unknown signal may also 

belongs to signal class 2 with a probability of 2/25, etc. 

3.        Example 

Assume that our training feature set has two features per signal and there are two 

feature sets for each of the two signal classes: 

Class 1 with features ({1.5,0.5},{2.5,1.5}) 

Class 2 with features ({3.5, 2.5},{0.5, 3.5}) 

Figure 4.2 plots the location of the feature sets. The tree growing process starts at 

the root node by computing the impurity value obtained : 
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E(f)=-0.51n(O.5)-O.51n(O.5) = 0.693147. 

Next cost reduction values measuring the purity gained after a specific decision 

are computed in succession for each feature for threshold values covering the feature 

value range. For example, Figure 4.2 shows that threshold values investigated for feature 

1 are in the range [.5 3.5]*[2.5 0.5]. Next, cost reduction valuesAE(xl,t) and AE(xs
2,t) 

are computed for each decision rule, such as xl<l,xl<2,xl<3,x2<l,x2<2, etc. 

Their values are listed in Table 4.1. 

Decision '     Rule 

"s" 

Cost Reduction Value 

JC, <1 0.2157 

x, <2 0 

xx <3 0.2157 

x2<\ 0.2157 

x2<2 0.6931 

x2<3 0.2157 

Table 4.1: Cost redi iction values for various c 

Table 4.1 shows that the decision rule "x2 < 2 ?" has the maximum cost reduction 

value and this decision rule will be assigned to the root node. Such a selection makes 

sense, because it can be viewed as drawing a perpendicular line from the y axis, which 
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partitions the input space perfectly. The resulting CT can be seen in Figure 4.3 with class 

probabilities assigned to terminal nodes. Note that children nodes become terminal node 

for this example, because there is no need to partition these nodes again. 
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Figure 4.2: Feature set locations. 
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Figure 4.3: CT for the class clusters shown in Figure 4.2. 

4.        Problems with Classification Trees 

The performance of the CT depends on the cluster locations of the signal classes. 

Recall that CT may be viewed as implementing a set of decision rules which are designed 

to separate the feature space into a set of non-overlapping rectangular regions containing 

class clusters. Thus, perfect classification will result when classes can be separated by 

perpendicular lines associated with each decision rule. However, when such separation is 

not possible, as shown in Figure 4.4, CT may have difficulty in separating classes even 

though the classes may be visually clearly separated and without any overlap. Eventually 

though, a tree-based classifier can be found to separate classes shown in Figure 4.4, but 

the resulting tree structure will be quite complex, as shown in Figure 4.5. In such cases, 
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other types of classifiers may be better suited to the problem.   Next, we consider BP 

neural network classifiers. 
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Figure 4.5: CT for the class clusters shown in Figure 4.4. 
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B.       THE BACK-PROPAGATION NEURAL NETWORK 

The back-propagation neural network is one of the most powerful classification 

tools available today [29]. It consists of one input layer, multiple computational layers, 

also known as hidden layers, and one output layer. In this study, we restrict our 

investigation and our discussions to one-hidden layer neural networks (NN) as they were 

shown to be sufficient for the data considered. However, this discussion can easily be 

generalized to k-hidden layer NNs. Figure 4.6 shows the general architecture of a NN 

implementation. Circular elements denoted as PE are processing elements. These 

elements are the building blocks of the neural network and Figure 4.7 shows their general 

diagram. The notation used in this diagram is explained below [24]: 

• JCJ*
1
 -> output of the j'h PE in the layer s 

• w[jj -> weight of j'h PE in layer s that will be multiplied with input x\s~1] 

• R[jS]  -> weighted summation of inputs to the j'h PE in layer s 

• cp -^ Transfer function 

As seen from Figure 4.7 x[*] can be computed as: 

x[f = J 2 >$*M J = <?(R[?]) (4-6) 

The non-linear transfer function chosen in this study is the log-sig function 

defined as: 
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This transfer function has a range of output values from 0 to 1. During the training 

process, target outputs are assigned to each input feature vector and the weights of the NN 

is adjusted so that its outputs best match the target outputs. In other words, the NN maps 

the input values to desired output values (target outputs). This process can be thought of 

as an error minimization process with respect to the NN weights, if the error is defined as 

the difference between target and NN outputs. In order to minimize this error, weight 

updates are needed during the training process. Basically, the error is first computed after 

the input vectors are applied to the NN and this error is back-propagated to compute the 

weight updates. Further details may be found in Ref. [24, 27]. 

In this thesis, we use the Neuralwork Professional H/Plus software to generate BP 

neural networks [31]. Thus, we briefly review the main options selected in this software. 

1. Learning Rule 

The Learning Rule (LR) is used to update the weights in order to decrease the 

error value. Note that some learning rules may outperform others, depending on the 

specific error surfaces obtained. In this thesis, we use the Normalized-Cumulative Delta 

learning rule. Further details regarding this LR may be found in Ref. [24]. 

2. MinMax Tables 

Saturation of the selected transfer function may occur if the inputs to the NN are 

not properly scaled prior to applying to the transfer function. When the transfer function 

gets saturated, its derivative becomes nearly zero, which causes a zero weight update. In 
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such a case, weights are not updated during the training process and the NN does not 

learn. To avoid this situation MinMax tables are generated prior to the training process 

using the training data set. The training data set is then scaled according to these tables to 

avoid staturation of the transfer function. 

3. Classification Rate 

The classification rate (CR) information is contained in a N by N confusion 

matrix, where N is the number of signal classes. Basically, this matrix shows the 

performance of the NN given the testing data set. After the NN is trained with the training 

data set and proper weights are obtained, a feature set belonging to a known class is 

presented to the NN. The outputs of the NN are computed and the PE at the output layer 

with the highest value selected as the class of the signal. Diagonal entries of the confusion 

matrix contain the correct classification decision percentages, while off-diagonal 

elements correspond to misclassification. Thus, perfect classification occurs when the 

confusion matrix is equal to the identity matrix. Overall classification rates are obtained 

by averaging each class classification rate, i.e., by averaging the confusion matrix 

diagonal elements. 

4. Network Architecture 

The type of NN architecture chosen in this study is a one-hidden layer, where the 

number of PEs in the hidden layer is chosen as 1/5 of the number of input features. We 

realize that there are several rules of thumb to select the number of PEs in the hidden 

layer. However, this study mostly deals with feature extraction tasks and using another 
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architecture was shown to improve the performance only slightly. As a result, 

optimization of the neural network implementations was not considered further. 

5.        Training and Testing the Neural Network 

Feature vectors are put into a matrix in row-wise fashion and target outputs are 

attached to each row in order to train and test the neural network with the NeuralWare 

software. Target outputs consist of a one in the correct signal class location and zeros 

otherwise. For example, the target vector equal to [0,0,0,0,0,1] denotes that there are 6 

signal classes and this feature vector belongs to signal class 6. NN training is stopped 

when a desired average classification rate is reached or when this value converges to a 

user-specified value. 
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Figure 4.6: Typical back-propagation neural network with one hidden layer. 
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Figure 4.7: Processing Element (PE). 

C.       EFFECTS OF CLUSTERING AND OVERLAPPING ON THE 
PERFORMANCE OF CLASSIFIERS 

We stated earlier in Chapter IE that good classification performances should be 

expected when class clusters do not overlap. This section further considers class 

clustering and overlapping issues, and illustrate them on some synthetic classification 

examples. 

1.        Two Non-overlapping Signal Classes in 2D 

Let us assume we have 2 classes of two-dimensional features. The first and 

second feature of class 1 are respectively defined as uniform random variables with 

densities U[l,3]    and U[7,9]. The first and second features of signal class 2 are 

respectively defined as uniform random variables with densities U[4,6] and U[7,9]. These 

two signal classes are plotted in Figure 4.8. A BP neural network with the architecture 2- 

1-2 is used for this problem. The number of testing signals per class is fixed at 200, while 

the number of training data set is increased gradually to investigate its effects on the 
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performance and average classification rates. The average classification ratios of this 

experiment are listed in Table 4.2. 

It is obvious that, as the number of training data set increases, performance gets 

better. The BP neural network tries to figure out the cluster borders using the training data 

set. As the number of training data set increases borders become more and more accurate 

and performance gets better accordingly. 
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Figure 4.8: Cluster locations: two nonoverlapping signal classes. 
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The number of training signals 

per signal class 

Average Classification rate 

(%) 

1 77.5 

5 100 

10 100 

20 100 

30 100 

Table 4.2: Classification rates versus number of training data set. 

2.        Two Overlapping Signal Classes in 2D 

Assume we have two bi-dimensional signal classes. The first and second features 

of signal class one are uniform random variables with densities U[l,5] and U[7,10]. The 

first and second features of signal class two are uniform random variables with densities 

U[3,7] and U[7,10]. These two signal classes overlap, as shown in Figure 4.9. A BP 2-1-2 

neural network is used as a classifier. In this example, we gradually increase the size of 

the training data set to investigate its effect on the performance and average classification 

rate. The testing data set is set at 200 testing signals per class. 

Results listed in Table 4.3 show that the performance of the neural network does 

not lead to perfect classification when the size of the training set increases, as was noted 

in the previous example. This performance loss is due to the presence of class cluster 

overlaps. 
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The number of training signals 

per signal class 

Average Classification rate 

(%) 

1 57.25 

5 80 

10 75 

20 81.25 

30 82 

50 81 

100 82 

200 82.5 

500 81 

Table 4.3: Classification rates versus number of training data set. 

Similar experiments were also performed for more than 2 signal classes in 2D and 

in higher dimensions, leading to the same conclusions. Thus, this example showed that 

signal class clusters should be separate to insure that increasing the training data size 

improves classification performances. Conversely, increasing the training data size will 

not guarantee improvements in classification performances when data class information 

overlaps. In such cases, classification performances may reach a plateau and no longer 

improve. 

86 



At this point one may wonder how decreasing the dimension of the data set helps 

the neural network. Non-relevant feature parameters contained in the training feature sets 

impede the training process as more data will be required to train the NN. Thus, removing 

these features may enable the NN to learn class boundaries with fewer training data. 

Finally, note that the confusion matrix gives a good insight about the positions of data 

clusters. For example we may conclude that clusters belonging two signal classes overlap, 

when the NN does not differentiate the two classes well. We added a third signal class to 

our previous example to illustrate this comment. The first and second features of this 

added signal class are uniform random variables with densities U[-l ,-2] and U[2,3], as 

shown in Figure 4.10. A NN with architecture 2-2-3 was used, and 100 training and 200 

testing data set were applied. The resulting confusion matrix is shown below. 

Average Class. Rate: 84.3% 

True  Class Label 

1 2 3 

Declared as 

Class 

1 67.5 14.5 0 

2 32.5 85.5 0 

3 0 0 100 

The confusion matrix shows that perfect classification is obtained for class three, 

as it does not overlap with any of the other classes, while performances degrade for the 

other two classes due to the partial overlap of their feature information. 
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Figure 4.9: Cluster locations: two partially overlapping signal classes. 

9 

8 

7 

3K 
3MK 

3K 

3K 

MC 

3K 

3K 

3K 

*                QO^O                    O0°                 ° 
IK*    * t*                                                          o 

,P                                   °    ^o oo    „ 

*    *    JB-'V1                                      „                            °0      ° 
3K     **^                                                        °0                                    O 

** ^o«^             *                          O 
3K          *C                    JK             o                             o              o        o 

- 

sa  e - 

5 - 

•4 - 

3 

■^f?" 
£*"!£* 

- 

-i >                               O 2 4 
X1 

6                             8 1 0 

Figure 4.10: Cluster locations: two partially overlapping signal classes, one non 
overlapping class. 

88 



V.       DIMENSION REDUCTION 

This chapter first considers feature space dimensionality issues and their impacts 

on classification tasks. Next, it presents two dimensional reduction schemes and their 

application to classification tasks. 

A.       CURSE OF DIMENSIONALITY 

Classification tasks require the user to extract features which contain as much 

discriminating information as possible. Such schemes may potentially lead to feature 

vectors of high dimension. However, the amount of training data needed to create good 

classifier performance grows exponentially with the dimension of the input feature space, 

as first discussed by Bellman who referred to the constraint as "curse of dimensionality" 

[20]. This constraint is especially applicable to PDF (Probability density function) based 

classifiers (like maximum likelihood classifier, etc.) and to a lesser extent to BP neural 

networks. Recall that in Chapter IV, we discussed the fact that non-relevant feature 

parameters contained in the training process, impede the training process as more data 

will be required to train a BP NN. As a result, removing these features may enable a BP 

NN to learn class boundaries with a smaller training data set. Therefore, reducing the 

dimension  of the  feature  space  is  usually needed to  obtain  good  classification 

performance in real-world problems where the amount of training data available may be 

somewhat restricted. Thus, classification schemes usually include the following few 

steps, as illustrated in Figure 5.1: 
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1-Feature extraction from the raw data, 

2-Reduction of the feature space, using a suitable tool, 

3-Classification based on the lower dimension feature space, using a BP, CT, or 

other classification tool. 

There are several dimension reduction techniques available today, and some of 

these techniques were mentioned earlier in Chapter m. For example, projection methods 

select linear combinations of the features to emphasize class separation [33, 36, 37]. 

Projection pursuit methods look for a small dimensional projection (usually one- or two- 

dimensional) of the feature space which emphasizes some user-specified measure of 

interest. Next, we will first present the concept of projection pursuit, and then introduce 

two dimension reduction tools. 

Raw data 
Feature Extractor Dimension Reducer Classifier -*"Class label 

Figure 5.1: Feature reduction/Classification model. 

B.       PROJECTION PURSUIT 

Reducing the feature space dimension can be obtained by considering projections 

of the high dimensional feature data set into a space with smaller dimensions. For 

example, consider a feature vector a of size (mx7) and a projection matrix P of size 

(mxn) where m>n.  The vector PTa   can be viewed as a low-dimensional projection of 
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the vector a of size (nxl). Projection pursuits (PP) schemes are designed to find the "most 

interesting" projection matrix P. Numerous choices for P are possible, depending on 

which projections are considered to be "interesting." In all cases, the basic concept behind 

PP schemes is to assign a projection index that indicates the degree to which each 

projection considered is interesting, and optimizes the index with respect to the 

parameters defining the projection matrix P. Thus, the core of this type of algorithm lies 

in the selection of the projection index. However note that, whatever the selected 

projection index is, information should not be lost during the dimension reduction 

process, as otherwise worsening in classification performances would result, assuming 

enough data is available to start with. 

Next, we will discuss two specific projection pursuit methods with different 

projection indexes. 

1.        BCM Unsupervised Neural Network 

a) Introduction 

In this dimension reduction technique, "interesting" projections are 

motivated by an observation made by Diaconis and Freedman (1984) [32] who noted that 

most of the low-dimensional projections of high-dimensional clusters tend to be normally 

distributed [32]. This finding suggests that the information in the high-dimensional 

feature space is transferred to the directions which produce low-dimensional projections 

far from Gaussian [32, 33]. Thus, projections leading to low-dimensional distributions 
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which are far from Gaussian will be considered as "interesting," and a projection index 

that will identify those projections will be employed in the feature reduction scheme. 

The BCM network (referred to as BCM in the following) was originally 

developed by Bienenstock, Cooper and Munro in 1982 to examine the synaptic plasticity 

in visual cortex [32]. It was later adapted by Nathan Intrator to the dimension reduction 

concept [32]. BCM is an unsupervised neural network, meaning that during the training 

process no target output is assigned to the input feature vectors. BCM contains processing 

elements (PEs), as the BP neural network does. Figure 5.2 presents the operations 

involved in the BCM: a dot product of the input feature vector with the weight vector, 

followed by a nonlinear activation function. However, the PEs configuration is somewhat 

different from that used in the BP network, due to the lateral inhibition operation, which 

prevents any neuron from outperforming the others during the training process [34]. 

Basically, it insures that the weights associated to all the neuron outputs will be equally 

taken into account and will lead to all neuron outputs with distributions far from 

Gaussian. Selection of a proper lateral inhibition factor is still an open research subject, 

and still remains one of the main drawbacks for BCM-based classification schemes. 

A sample BCM neural network with two PEs is shown in Figure 5.3. At 

this point, note that each PE output represents one of the reduced dimension features, and 

the weights associated with each PE can be considered as a projection of the input feature 

space into a one-dimensional space. Thus, if there are two PEs in a BCM configuration, 

then the dimension of the input space is reduced to two. As a consequence, the main idea 
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behind the BCM projection selection scheme lies in finding the weights that will result in 

non-Gaussian distributed PE outputs. 

b) Projection index 

The projection index used in the BCM scheme for a single neuron and no 

activation function is called the Risk, R(m), which is designed to measure the degree of 

skewness of the PE output values x»m from normality. The Risk function R(m) is 

defined as: 

i?(m) = --£[(*«m)3] + -£2[(*.m)2], (5.1) 

where x and m are the input and weight vectors respectively and the " • " operation is the 

dot product. 

(1)      Example. Let us consider a simple example to 

illustrate the concepts described above. Assume we have two one-dimensional classes. 

The first one contains data with Gaussian distribution N(0,1), while the second one 

contains data with uniform distribution U(l,2). One thousand data points are considered 

in each class, and their histograms plotted in Figure 5.4. The risk values obtained for the 

two classes are equal to 0.2653 and 0.1115, respectively, which illustrates the fact that the 

risk value is lower for non-Gaussian data. 

c) BCM training process 

The BCM training process is designed to find the PE weights that 

minimize the risk value. This training process can be viewed as trying to reach the bottom 

of a multidimensional risk surface defined in terms of the weight vector coefficients. For 
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example, assume that the input feature dimension is two and the user wishes to reduce it 

to one using a BCM scheme with one PE. In such a case, the PE has two weight 

coefficients, and the dimension reduction involves a two-dimensional minimization of the 

risk surface R with respect to the two PE weight coefficients. The minimization scheme 

used in our implementation is the steepest descent method [29] which has the following 

weight update equation: 

oR 
m(n) = m(n -1) + LL—, (5.2) —        "~ dm 

where the learning fi is specified by the user, and m(n) represents the weight vector at 

time sample n. 

Thus, Equation 5.2 shows that the core of the training process lies in the 

estimation of the partial derivative expression for the risk function R(m), which is 

considered next. 

(1) Single Neuron Case. First, assume that this single 

neuron (PE) has no activation function O(x). The partial derivative of the risk function 

R(m) defined in Equation 5.1 with respect to the weight vector m becomes: 

dR 
^ = -E[(x*m)2xi] + E[(x*m)2]E[(x*m)xil (5.3) 
omi 

where mi and xt are the i,h components of the weight and input vectors. 

Now assume that the activation function O (x) is nonlinear. 

For example, a logsig function scaled between -10 and +10 was used in our BCM 

scheme. In such a case, the single BCM neuron output will be <J>(x«m)and the 

associated risk value becomes: 
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1 1 
R = --E[®3(x»m)] + -E2[®2(x*m)l (5.4) 

It can be shown that the partial derivative of the risk 

function with respect to the weight coefficients is given by: 

dR 
= -E[®2(x»rr$®\x»m)xi] + E[®2(x»m)]E[®(x»m)&(x*m)xi], (5.5) 

3mi 

where <& (x • m) represents the derivative of the activation function at the point x • m. 

Equation 5.5 completes the formulation of the single 

neuron BCM network, and the minimization can then be applied to compute the weights 

leading to the minimum risk value. Of course, expected value operators present in 

Equations 5.4 and 5.5 are replaced by mean operators in practical applications. Further, 

note a random initial weight value is to be selected at the beginning of the training 

process. 

(2)        Multiple  Neuron  Case.   As  mentioned  earlier, 

interaction between different neurons can be introduced when the BCM network has 

multiple neurons by introducing lateral inhibition between the PEs, as illustrated in 

Figure 5.3 [32]. In such a case, the output of a k'h PE is defined as: 

i*k 

where T| is called the inhibition factor, and ck =x*rnk. 

Now let us derive the partial derivative expression needed 

for the weight update equation. As was done earlier in the single neuron case, we first 

assume that the activation function is linear, and then take the nonlinearity into account 
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later on. Thus, the risk function obtained for the k'h PE contained in the BCM network 

with lateral inhibition is obtained by replacing x • m by ck in Equation 5.1, which leads 

to: 

1       ,     1 
3*^ + 4 Rk=--E[c?] + -E2[ck

2]. (5.7) 

Thus, the total risk expression R obtained for a BCM 

network with N neurons, is defined as the sum of the individual risk functions [32]: 

R = f,Rk. (5-8) 

Next, it can be shown that the partial derivative of the total 

risk R with respect to the weight values mk is obtained as [32]: 

dR 
— = E[(c2 - ckE[c2 ])x] - rij E[(c2 - c,E[cf ])*]. (5.9) 
Omk j*k 

Note that the minimization of the total risk function given 

in Equation 5.8 is designed to produce neuron output values with distributions far from 

Gaussian. 

Next, taking the activation function into account, the 

laterally inhibited output of the kth neuron can be expressed as: 

ck=d>(ck-r£cj). (5.10) 
i*k 

The partial derivative of the total risk function can be shown to be equal to [32]: 

96 



— = E[(ck
2 -ckE[ck

2])^(ck)x\-r^E[{cj -c,£[cf ])<!>'(c,.)*].      (5.11) 
omk j*k 

which completes the derivation of the N-neuron BCM network update equation. 

d)       Summary 

The training stage used in a BCM-based classification scheme has two 

parts: 

1- Training of the BCM network, 

2- Training of the classifier using the BCM outputs. 

This process is illustrated in Figure 5.5a. Once the classifier is trained, 

testing feature vectors are fed into the BCM network to reduce their dimensionality, and 

the resulting BCM outputs fed into a classifier to obtain class labels, as illustrated in 

Figure 5.5b. 
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Figure 5.2: BCM neural network processing element (PE) diagram. 
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Figure 5.3: A sample BCM neural network with two PE's. 
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Figure 5.4: Data histograms for: (a) Gaussian data N(0,1), (b) Uniform data U(l,2) 
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Figure 5.5: BCM based classification scheme: (a) Training phase, (b) Testing phase. 
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e) BCM-based Dimension Reduction Examples 

(1) Dimension reduction from two to one. Consider two 

data classes which are represented by two features each. Assume that the class features 

are contained in the range [-1,0]*[0,2], and [0,1]*[0,1] respectively, as illustrated in 

Figure 5.6. Further, assume that there are 100 signals per signal class. Assume that we 

wish to reduce the dimension of the feature space from two to one, which requires one PE 

with one weight vector of length two. Initial weight values for the weight update equation 

are chosen equal to [1,1]. Using the training data set, the gradient value at the present 

weight location is computed using Equation 5.5 and the weights updated accordingly. 

Results show that the risk value converges to its minimum value after 20 iterations. 

Figure 5.7 shows the corresponding risk surface, risk contour and the trace of weight 

update during the training process. Note that the gradient value guided the process 

towards the minimum point of the risk surface. The upper plot in Figure 5.8 shows the 

values obtained for the BCM outputs as a function of the feature vector it was trained on. 

The first hundred feature vectors were selected from class one, while the next hundred 

from class two. This plot shows that the BCM output values obtained for feature vectors 

for class one and two are respectively centered around different values. Therefore, this 

example shows that the feature reduction operation preserved the class separability 

information, as the original 2D separate clusters are still separate in one dimension. The 

risk value obtained is equal to -0.2095. The lower plot in Figure 5.8 shows the histogram 

of the BCM output. Note that it is far from Gaussian. 

100 



2 

1.8 

1.6 

1.4 

j      1 

I 0.8 

0.6 

0.4 

0.2 

• -sie  ' -3K  -I— -an  M* '                         '  1   ■     T               

* * *e 

JK 
3K 

* 3K * 
a* 

MS " 
~ 3K 

*6 * m K 

■* m - 
m MC 9K              "*" 

3K SK SK* 

« * MC 
9K *« * 

* S* 
3K 

ME 

* X     +   St         + 

t.      +           **- * 
3K SK -H-            +.      + +   ++     + 9t6K *            .i* . +z 

9K 3K 

S* MS 
MS 

9K 

3K 
9K 

*** 
9K 

+                    * 

- 3K **+         -+- +   +   * -4- 

_** 9« 
NC 

* 3K 

* 
9K 

+          + 

* , , ■                            •  4t 
+ 1     -+- 

-0.8 -0.6 -0.4 -0.2 O 
First feature 

0.2 0.4 0.6 0.8 

Figure 5.6: Cluster locations for the single neuron BCM implementation. 

Figure 5.7: Risk surface, risk contour and trace of the weight update process. 
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Figure 5.8: 2 Feature reduction using the BCM scheme; two-dimensional signal classes; 
BCM output values (top plot), output values histogram (bottom plot). 

(2) Dimension reduction from three to two. Now 

consider the three signal clusters shown in Figure 5.9. Signals have three features so the 

original dimension is three. In this example, we reduce the dimension to 2 using a BCM 

configuration with 2 PEs. Thus, each PE has three weight components. Forty signals per 

signal class are considered during the training process, and the lateral inhibition factor 

0.02 is selected. The total risk value converged to a minimum after 100 iterations. 

Figure 5.10 plots the outputs of the BCM configuration for 

the given input features. Notice that we still have three separate clusters in 2D, meaning 

that the class separation information is still conveyed in the reduced dimension space. 

Figure 5.11 plots the histograms of each neuron output and shows the associated risk 

values. 
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Figure 5.11: Histograms of the 2-neuron BCM output values. 

f) BCM-Based Classification Scheme Example 

In this example we illustrate the behavior of the BCM scheme used for 

feature reduction, the actual classification is done via BP as shown in Figure 5.5b. Two 

signals were considered: linear and quadratic chirps of length 512. Signal frequency 

characteristics were randomly changed 10% and white Gaussian noise was added to get a 

SNR of -5 dB. Forty training and 200 testing signals per signal class were selected. The 

Power method presented in Chapter HI was chosen to extract the signal features. The first 

8 scales were used, which resulted in 511 features per signal. Two classification schemes 

were considered, as shown in Figure 5.12. First, we considered a BP neural network with 

the configuration 511-100-2. Next, we considered a BCM network with configuration 
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511-10 (meaning the feature space dimension was reduced from 511 to 10, using a 10- 

neuron BCM network). Next, the reduced dimension features were used as input to a BP 

classifier of configuration 10-8-2. The Mathworks neural network toolbox package was 

used to implement the BP network [35]. The resulting classification rates obtained were 

75% and 88% respectively. 

BP Neural Netwotk 
511-100-2 ►.     Class Label 511 Power features               '* 

BCM Neural Network 
511-10 

BP Neural Network 
10-8-2 

 .^     Pia« I .ahpl 
511 Power features    * 

Figure 5.12: Two classification schemes considered in the first example. 

g)        BCM Drawbacks 

The first problem encountered in the BCM is its slow convergence during 

training. For this reason, we adopted the variable learning rate with momentum algorithm 

in the weight equation update used during the BCM training phase [29,31]. Basically, this 

algorithm adjusts the learning rate according to the shape of the risk surface. Thus, the 

learning rate increases when the risk surface is smooth and decreases when the iteration 

occurs in a portion of the surface with a steep slope. 

The second problem is the fact that the risk surface may have multiple 

minima due to the cubic expression in the risk equation. Therefore, the algorithm may 
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stop at an undesirable local minimum, depending on the choice of the initial weight 

values. The likelihood of stopping at a local minimum may be decreased by running the 

scheme several times with different initial weight values, and selecting that which leads 

to the lowest risk value. However, running the scheme multiple times is expensive and 

does not guarantee the global minimum will be reached. 

Finally, the third problem is the selection of a useful lateral inhibition 

factor which remains an open research area. 

Next, we will consider a different projection pursuit algorithm scheme 

where projections that best discriminate between signal classes are considered as 

"interesting." 

2.        Mean Separator Neural Network 

a)        Concept 

This particular neural network deals with one-dimensional projections that 

best separate two signal classes. One sample PE of this neural network is shown in Figure 

5.13. Notice that it is identical to a PE used in a BP neural network. Assume that there are 

N training data sets per signal class, denoted as  x = {xj-lf       and     y = {yJI-Ii 

respectively. We define the mean-difference (MD) projection index for this neural 

network as: 

MD = -(£[<&( w» *)]- £[0(w» y)])2, (5.12) 

where <1> is the activation function and w is the weight vector. 
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In addition, the logsig function scaled between 10 and -10 is used as the 

activation function, as was considered earlier in the BCM setup. During the training 

process this projection index is minimized iteratively. The partial derivative of the 

projection index with respect to the weight vector is obtained as: 

^^ = -2(E[^(w*x\-Emw*y)])(E[^\w»x)xi]-E[^'(w*y)yi]).   (5.13) 
awi — — 

Thus, the scheme minimizes the MD projection index given in Equation 

5.12 in terms of the weight vector coefficients, as done in the BCM scheme. Note that 

each PE of this neural network can only be trained to distinguish between two signal 

classes. However, the following alternatives can be used in implementations dealing with 

more than two classes: 

Alternative 1: Train each PE to distinguish one signal class from the rest 

(we call this alternative as the Class_x/Class non-x formulation). Then, there will TV 

neurons in a TV-signal class classification problem and outputs of these neurons can be fed 

into a classifier. 

In addition, this network can also be used as a stand-alone classifier when 

followed by a decision scheme, as illustrated in Figure 5.14, even though it was originally 

designed for dimension reduction purposes only. For example, assume there are TV signal 

classes and TV neurons are trained using the Class_x/Class_non-x alternative. After 

training is completed, the training feature vectors belonging to each class are fed into the 

TV-neuron mean separator network and the mean of each neuron output values computed. 

These TV mean values constitute the reference values for each class and are denoted as r", 
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where, l<i< N. During testing, unknown feature vector p_ is fed into the mean separator 

network and its output values o{ computed. The distance c" between the output values 

obtained for the testing feature vector and the reference output values obtained for each 

class is computed as: 

c"=2>;-*t)
2, (5-14) 

where \<n< N. 

Class labeling is obtained by selecting the class which leads to the smallest 

distance between reference and testing output values.. 

Alternative 2: Train each PE to distinguish two signal classes pairwise. For 

example, in a three-class case, the first neuron is trained to distinguish between classes 1 

and 2, the second one trained to distinguish between classes 1 and 3, while the third 

neuron is trained to distinguish between classes 2 and 3. The number of resulting features 

AH 
obtained with this set-up is ——, where N is the number of signal classes. Then, 

the output values may be fed into a classifier, or used as a stand-alone classifier with the 

decision scheme presented earlier. The main drawback with this set-up is the higher 

number of neurons needed to implement this approach. 
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Figure 5.13: A sample PE of the mean separator neural network. 
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Figure 5.14: One possible classification configuration with mean separator neural 
network. 

b)        Dimension Reduction Examples 

The first example deals with the two clusters shown in Figure 5.15. Each 

feature vector contains two features and 40 signals per class. The weight update equation 

converged during the training phase after 30 iterations. Figure 5.16 plots the neuron 

output for the given training data set, where the first 40 values are obtained with signals 

belonging to the first class while the rest belong to the second class. This figure shows 
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that the trained neuron has positive output values for the first signal class and negative 

values for the second class. Thus, unlabelled signals may be assigned to one of the two 

classes based on their output values. 
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Figure 5.15: Two clusters in 2D. 
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Figure 5.16: Mean separator neuron output for the clusters in Figure 5.15. 
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The second example illustrates the algorithm behavior when dealing with 

more than two classes and alternative-1 (Class x/Class non-x) is selected for feature 

reduction. Figure 5.17 plots three separate three-dimensional clusters that belong to three 

signal classes. Forty signals are used for training. Each of the three neurons is tuned to 

one single class, and trained using the training data set. (Note that in this example no 

dimension reduction is done, as there are three features before and after using the mean 

separator. However, this example was selected to get some insight on alternative-1 by 

visualizing the cluster locations and the resulting neuron output values.) Figure 5.18 plots 

the neuron output values obtained using the training data set after the training is 

completed. Note that each neuron gives a specific output when the signal that it was tuned 

to is presented. For example, the first neuron was tuned to the first signal class. The 

output values obtained from that signal class are equal to -10 while the output values 

obtained for the other 2 classes are equal to +10. Thus, this neuron can be used to 

distinguish class 1 from the rest. Similarly, the second neuron was tuned to distinguish 

class 2 from the rest. As a result the values obtained when presented class 2 signals are 

different from those obtained with class non-2 signals, thereby allowing to differentiate 

class 2 from class non-2. Similar comments hold for the third neuron, which was tuned to 

distinguish class 3 from the rest. These three neuron outputs can then be fed into a 

classifier, or can be used with a decision scheme, as illustrated in Figure 5.14. 

Finally, notice the training process of the classification scheme is identical 

to that present in the BCM-based classification scheme when the mean separator network 
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is used as a dimension reduction tool; first, the mean separator network is trained, next 

the output values are used in the training of a classifier, or with a decision scheme. 
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Figure 5.18: Three neuron outputs. 
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c)        Mean Separator Based Classification Scheme Examples 

(1)       Two signal classes. This example considers linear 

chirp and quadratic chirp signal classes. Signal frequency characteristics were randomly 

altered 10% and the signal length was taken as 256. Forty signals per class were used for 

the training phase and 100 testing signals per class were used during the testing phase. 

White Gaussian noise was added to get a SNR of -5 dB. Initial class feature sets were 

obtained using the Power method described in Chapter HI. The maximum scale selected 

was 7, resulting in 255 power features per signal. The following three classification 

schemes were considered (numbers in parenthesis indicate the classification rate): 

1-Using the full size feature set and a BP neural network 

with the configuration 255-50-2 (82.2%), 

2-Reducing the feature dimension from 255 to 50 using the 

most discriminating feature reduction scheme described in Chapter m. The resulting 

features were fed into a BP neural network of configuration 50-10-2 (83.8%), 

3- Training a mean separator neuron to distinguish 

between the two signal classes. Class labeling was assigned according to the neuron 

output values, as illustrated in Figure 5.14. Note that this model doesn't use a BP NN 

(88%). 

(a)       Results 

Confusion matrices obtained by averaging five trials 

are presented below for each scheme. Linear and quadratic classes are denoted as class 1 

and 2 respectively. Recall that the confusion matrix diagonal elements show correct 
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classification decisions expressed in percentage, while the off-diagonal elements show the 

incorrect classification decisions. 

Scheme 1 

Average          Class.           Rate:         82.2% 

True  Class      Label 

1                 |2 

Declared as   1 1 88 23.6 

Class           | 2 12 76.4 

Scheme 2 

Average Class.            Rate: 83.8% 

True  Class Label 

1 2 

Declared as 

Class 

| 1 81.2 13.6 

|2 18.8 86.4 

Scheme 3 

Average           Class.            Rate:          88% 

True  Class      Label 

1                  |2 

Declared as   j 1 86 10 

Class           | 2 14 90 
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Results show that the best overall classification performance is obtained 

using the feature reduction followed by the decision step, which is actually the least 

expensive scheme to implement as no BP NN was used in the actual classification step. 

(2) Five signal classes. The following five signal classes, 

previously used in Chapter HI, were considered again: linear and quadratic chirps, 

doppler, high frequency sine and low frequency sine signal classes. The SNR level was 

set at -5dB. Forty training and 100 testing signals were used. Signal length was kept at 

256. Signal frequency characteristics were randomly altered 10%. Again the Power 

method, with maximum scale equal to 7 was selected to extract the initial features, 

resulting in 255 power features per signal. Six classification scheme were tested: 

1- A BP neural network using the full high-dimensional 

feature set, with configuration 255-50-5 (79%), 

2-A combination of a feature reduction scheme (discussed 

in Chapter HI), followed by a BP neural network. The feature reduction step selected the 

50 most discriminating features. The resulting 50 features were fed into a BP neural 

network with configuration 50-10-5 (67%), 

3- A combination of a Mean Separator neural network with 

5 PEs followed by a BP neural network with configuration 5-5-5. Each PE contained in 

the Mean Separator NN was tuned to one signal class, following the Class-x/Class non-x 

scheme described earlier in Section 2a (81%), 

4-A mean separator neural network with 5 PEs followed by 

the decision scheme to set class labels, as described in Section 2a and Figure 5.14 (81%), 
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5-A combination of a Mean Separator neural network with 

10 PEs followed by a BP neural network with configuration 10-5-5. Each PE in the Mean 

Separator NN was trained to distinguish two signal classes pairwise, as described in 

Section 2b (84%), 

6- A mean separator neural network with 10 PEs followed 

by the decision scheme to set class labels, as described earlier in Section 2b and Figure 

5.14(84%). 

Confusion matrices obtained with each scheme by 

averaging five trials are presented below, where linear, quadratic, doppler, high frequency 

sine and low frequency sine signal classes are denoted as classes 1 to 5 respectively. 

Scheme 1: Average Classif. Rate: 79% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

58.8 17.6 1.8 0.2 3.8 

17.8 55.4 9 0.6 0.4 

4.4 21.2 88.4 0 0.2 

7.6 1.8 0.4 99 0 

11.4 4 0.4 0.2 95.6 
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Scheme 2: Average Classif. Rate: 67% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

24 7.8 0 5.2 8 

11.8 46.4 2.2 2 2.8 

11.4 35 97.4 1.2 0.4 

20.2 2.8 0.4 84.2 7.4 

32.4 8 0 7.4 81.4 

Scheme 3: Average Classif. Rate: 81% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

75 21.6 3.4 6 9.8 

12.6 58.2 4.4 2.4 2.6 

1.8 17 92 0 0 

1.4 0 0.2 91.6 0 

9.2 3.2 0 0 87.6 
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Scheine 4: Average Classif. Rate: 81% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

76 26.6 4.2 6.8 8.6 

8.2 53 3 1.2 0.4 

1.8 17.2 92.2 0 0 

1.8 0 0.2 91.4 0 

12.2 3.2 0.4 0.6 91 

Scheme 5: Average Classif. Rate: 84% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

78.6 12.8 1.6 6.4 13.4 

11.6 74.6 7.2 1.2 1.2 

2.6 6.6 90.6 0.4 0.2 

1.4 0 0.2 92 0 

5.8 2.4 0.4 0 85.2 
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Scheine 6: Average Classif. Rate: 84% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

69.4 15 0.8 4.4 9.6 

11 73.6 5.8 0.6 1 

2.8 6.4 93.2 0.2 0 

8 1.6 0.2 94.8 0 

8.8 3.4 0 0 89.4 

Results show that the best overall classification performance is obtained 

using schemes 5 and 6. Note that these schemes reduce the dimension of the input space 

from 255 to 10. 

A few comments are in order. 

1) The combination of the mean separator network and the BP NN results 

in a very fast training process, due to the low dimensionality of the input feature space. 

2) The dimension reduction method selected in the second scheme didn't 

work well for this problem. Recall that in Chapter IH, section B.2.c, we stated that the 

selected features may not have enough discriminating information for some of the signal 

classes, as this feature selection scheme uses averaged pair-wise relative entropy values 

defined in Equation 3.5. The confusion matrix for this scheme shows that the selected 

features do not contain discriminating information for the first class.   As a result, the 
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classification rate for this class is only 24%, which degrades the overall classification 

rate. 

3) The combination of the mean separator and the decision step considered 

in the fourth scheme outperformed the BP NN trained using the full high-dimensional 

feature set. Note that this scheme is very inexpensive, as class labeling is obtained using a 

simple decision scheme. The same type of comments holds for the sixth scheme 

investigated, however, this last scheme requires a higher number of PEs as it is based on 

pairwise feature discrimination. 

d)        Problems With the Mean Separator Neural Network 

The first problem encountered during the implementations was slow 

convergence during the training process. Thus, we adopted the variable learning rate with 

momentum algorithm [31] in the weight update equation to alleviate this problem, as 

done in the BCM. 

The second and maybe the most important problem is the existence of 

local minima in the optimization scheme. Thus, the algorithm may stop at an undesirable 

local minimum, depending on the choice of the initial weight values. As a result, users 

may choose to run the scheme several times with different initial weight values, and 

select that which leads to the lowest MD value. However, this solution is expensive and 

does not guarantee the global minimum will be reached. 
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VI.      CLASSIFICATION RESULTS 

The objective of this chapter is to apply the various classification tools (feature 

extractors, classifiers, dimension reducers) presented in previous mentioned chapters and 

to compare their performances when applied to synthetic and real world signals. First, we 

consider feature extraction schemes when used in connection with classifiers. Next, we 

consider dimension reduction tools on synthetic signals. Finally, we apply several 

combined classification schemes to real world underwater signals and compare their 

performances. 

A.       PERFORMANCE TESTS ON FEATURE EXTRACTION METHODS AND 
CLASSIFIERS 

The performances of several classification schemes which combine feature 

extraction steps followed by a classifier are compared next. Five signal classes are 

considered: linear and quadratic chirp, doppler, high and low frequency sine signals, 

referred to as class 1 to 5 respectively. As done earlier, the signal frequency 

characteristics are altered 10% randomly to introduce some variability in the signal 

classes, and the signal length is kept at 256 samples. White gaussian noise is added to 

signal samples to get a SNR of -5 dB. Forty training and 100 testing signals per signal 

class are used in the implementations. The first 7 scales were selected, resulting in 255 

power method features, and 256 LDB features. The following four classification schemes 

are tested: 
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1- 256 LDB features followed by a BP neural network with configuration 256-50- 

5 (98%), 

2- 255 Power features followed by a BP neural network with configuration 255- 

50-5 (82%), 

3-256 LDB features followed by a CT (57%), 

4- 255 Power features followed by a CT (75%). 

Trials were performed 5 times and averaged confusion matrices computed, 

leading to the following results: 

Scheme 1: Average Classif. Rate: 98% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

98.4 0.2 0 1 0.8 

0.2 99.4 0 0.4 0.8 

0.2 0.2 100 0.6 0.2 

0.4 0 0 95.6 0.4 

0.8 0.2 0 2.4 97.8 
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Scheine 2: Average Classif. Rate: 82% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

82.4 31.2 6 4.2 5.2 

8.2 49.2 5.4 0 0.2 

2 15 88.6 0.2 0.2 

2.2 0.4 0 95.6 0 

5.2 4.2 0 0 94.4 

Scheme 3: Average Classif. Rate: 57% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

55.6 10.4 9.2 25.6 21.6 

4.2 80.2 3.8 4 5.8 

5 0.8 63.8 4 3.2 

20.8 5.8 13.2 51.2 33.4 

14.4 2.8 10 15.2 36 
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Scheine 4: Average Classif. Rate: 75% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

6.6 44.8 3 2 3.8 

15.2 46 18.8 1.2 2.2 

3.8 26 78.2 1.6 0.2 

4.4 0.6 0 95.2 0 

10.6 2.6 0 0 93.8 

A few comments are in order: 

1-Results show that the BP neural network outperformed the CT with both feature 

extraction methods. This result is to be expected as the CT tries to partition signal clusters 

with perpendicular lines while the NN has no such constraint. 

2-The CT has better performance when using Power method features than LDB 

features, while the opposite is true for the BP NN. Sample CTs obtained for the third and 

fourth schemes are shown in Figures 6.1 and 6.2 respectively. Note that the CT in Figure 

6.1 is far more complex than that of Figure 6.2, which may indicate that the class clusters 

obtained using the LDB are not as well matched as those obtained using the Power 

method for tree partitioning. In general, we noted that classification rates tended to be 

lower when the associated CT were complex. 
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3- The best performance was obtained when using the LDB method followed by a 

BP neural network. However, note that one may hardly expect ideal behavior with real 

world signals, where one would have to deal with time synchronization issues, etc. When 

random time shifts between 0 to 100 sample points are introduced in the signals to be 

classified, the results change drastically, leading to: 

Scheme 1: Average Classif. Rate: 47% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

40 30.2 11.2 15.8 12.2 

23 37.8 16.6 8.4 14.4 

13.2 16.4 51.2 9.4 20.2 

11.4 6.2 10.4 60.8 8.8 

12.4 9.4 10.6 5.6 44.4 
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Scheme 2: Average Classif. Rate: 60% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

35.6 15 14.4 4.4 7.6 

19.6 38 9.4 2.6 7.4 

28.4 38.2 68.8 7.6 14.6 

6 2 3.2 84.8 1.8 

10.4 6.8 4.2 0.6 68.6 

Scheme 3: Average Classif. Rate: 24% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

17 17.8 16.6 18.6 18 

19.8 19.8 18 25.2 23.4 

21.8 26 32.6 15.6 19.2 

17.8 19.2 14.6 22.8 14.4 

23.6 17.2 18.2 17.8 25 
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Scheine 4: Average Classif. Rate: 43% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

19.6 15.8 20.8 14.2 14.2 

40.2 40.6 25.4 18 14.4 

26 34.6 42.4 6 15.6 

2.8 1.2 1.6 60.2 1.2 

11.4 7.8 9.8 1.6 54.6 

Such degradations are to be expected. However, results also show that the Power 

method is more robust to time shifts than the LDB method is. Thus, one may expect the 

Power method followed by a BP NN to outperform schemes involving LDB and CTs in 

real world problems where time shifts may occur. We will further test this classification 

scheme along with the others at the end of this chapter on real world underwater signals. 
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Figure 6.1: One sample CT for the LDB + CT classification scheme. 

Figure 6.2: One sample CT for the Power + CT classification scheme. 
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B.       DIMENSION REDUCTION EXPERIMENTS 

This section considers dimension reduction issues and investigates whether they 

are useful when using CTs. Next, we test dimension reduction schemes on synthetic 

signals. 

1.        Dimension Reduction Issues with CT 

As mentioned in Chapter IV, the CT growing process involves the selection of 

"best questions" to partition the data, and as a result, to extract a small number of features 

which are used in the classification process while the rest is simply disregarded. Actually, 

this partitioning process itself can also be viewed as some type of dimension reduction 

scheme. Thus, there is no need to reduce the dimension of the features prior to using the 

CT as long as the CT growing process preserves all the class information. 

This comment was illustrated on the five signal class example used earlier (no 

time shifts are added to the data). The signal length is kept at 512 samples, and the 

maximum scale selected is 8, leading to 512 LDB and 511 Power method features. We 

first considered using Power method features followed a CT in the following four 

classification schemes: 

1-511 (all) Power features followed by a CT (91%), 

2- 250 most discriminating Power features followed by a CT (86%), 

3- 100 most discriminating Power features followed by a CT (74%), 

4- 50 most discriminating Power features followed by a CT (63%). 

Five trials were performed, and average confusion matrices computed, leading to 

the following results: 

129 



Scheme 1: Average Classif. Rate: 91% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

87 18.2 0 0.4 3.8 

7.8 79.4 3.8 0 0.4 

0 1.6 96.2 0 0 

1.6 0 0 99.6 0 

3.6 0.8 0 0 95.8 

Scheme 2: Average Classif. Rate: 86% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

75.2 17 0 6.4 7.8 

7.8 79.4 3.8 0 0.4 

0 1.6 96.2 0 0 

14.4 2 0 93.6 4.6 

2.6 0 0 0 87.2 
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Scheine 3: Average Classif. Rate: 74% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

62.4 18.8 0 10.2 12.4 

7.8 79.4 3.8 0 0.4 

0 1.6 96.2 0 0 

9.2 0 0 64.6 21.8 

20.6 0.2 0 25.2 65.4 

Scheme 4: Average Classif. Rate: 63% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

59 19.2 0 25 33.4 

15.2 77.8 5.8 3.8 3 

0 1.8 94.2 0 0 

10 1 0 42.2 22.4 

15.8 0.2 0 29 41.2 
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A few comments are in order: 

1) Results show that the best performance was obtained when no dimension 

reduction was performed prior to the CT step, which indicates that the CT natural 

dimension reduction process is effective. The poor performance obtained with schemes 2, 

3 and 4 may be due to the specific most discriminating dimension reduction method 

considered in these schemes. Better results might have been obtained with another 

dimension reduction scheme, but the classification rate obtained without doing any 

dimension reduction (using all features with CT) is high and relying on CT natural 

dimension reduction process seems sufficient at this point. 

Second, the same experiment was performed using the LDB feature extraction 

method followed by a CT. The following four classification schemes were considered : 

1-512 LDB features followed by a CT (61%), 

2- 250 most discriminating LDB features followed by a CT (61%), 

3-100 most discriminating LDB features followed by a CT (61%), 

4- 50 most discriminating LDB features followed by a CT (61%). 

Average confusion matrices were computed using five trials, leading to: 
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Scheme 1: Average Classif. Rate: 61% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

63 20.6 17.2 20 19.8 

3.4 76.2 2 1.6 2.2 

1.8 0.2 75.8 2.2 2.2 

15 1.2 1.4 38.4 25 

16.8 1.8 3.6 37.8 50.8 

Scheme 2: Average Classif. Rate: 61% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

63.8 20.6 18.2 21 21 

3.4 76.2 2 1.6 2.2 

2.2 0.2 75 2.6 2.6 

15.2 1 1.4 37.6 24.6 

15.4 2 3.4 37.2 49.6 
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Scheine 3: Average Classif. Rate: 61% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

72 20.4 15.8 27.8 25 

3.4 76.2 2 1.6 2.2 

1.8 0.2 78.2 2.8 2 

12.8 2 1.6 32.8 27.2 

10 1.2 2.4 35 43.6 

Scheme 4: Average Classif. Rate: 61% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

72 20.4 15.8 27.8 25 

3.4 76.2 2 1.6 2.2 

1.8 0.2 78.2 2.8 2 

12.8 2 1.6 32.8 27.2 

10 1.2 2.4 35 43.6 
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Results show lower classification rates than those obtained using the Power 

method. This is to be expected as the averaging operation present in the Power method 

makes it more robust to in-class signal variations. Results also show that same 

performances are obtained with the full set of LDB features or a smaller number selected 

using the most discriminating LDB scheme. 

Thus, these results illustrate the fact that the CT has its own powerful "dimension 

reduction" process which makes using additional dimension reduction schemes 

unnecessary at this point. As a result, we select the BP neural network as classifier type 

when testing the performances of dimension reduction methods on LDB and Power 

methods. 

2.        Performance Tests on Dimension Reduction Tools 

First, we will investigate the performances of the dimension reduction schemes 

on the LDB feature extraction method. The same five signal class example as used earlier 

is considered again. Signal length is set at 256 samples, and the SNR was kept at -5 dB. 

The first 7 scales were selected resulting in 256 LDB features per signal sample. Forty 

training and 100 testing signals were used. The following eight classification schemes 

were implemented: 

1- 256 LDB features followed by a BP neural network with configuration 256-50- 

5 (97%), 

2-100 most discriminating LDB features followed by a BP neural network with 

configuration 100-20-5 (96%), 
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3-50 most discriminating LDB features followed by a BP neural network with 

configuration 50-10-5 (88%), 

4-20 most discriminating LDB features followed by a BP neural network with 

configuration 20-5-5 (73%), 

5-A combination of a Mean Separator neural network with 5 PEs followed by a 

BP neural network with configuration 5-5-5. Each PE contained in the Mean Separator 

NN was tuned to one signal class, following the Class-x/Class non-x scheme described 

earlier in Chapter V, Section 2a (97%), 

6-A mean separator neural network with 5 PEs followed by the decision scheme 

to set class labels, as described in Chapter V, Section 2a and Figure 5.14 (98%), 

7-A combination of a Mean Separator neural network with 10 PEs followed by a 

BP neural network with configuration 10-5-5. Each PE in the Mean Separator NN was 

trained to distinguish two signal classes pairwise, as described in Chapter V, Section 2b 

(95%), 

8-A mean separator neural network with 10 PEs followed by the decision scheme 

to set class labels, as described earlier in Chapter V, Section 2b and Figure 5.14 (96%). 

After 5 trials confusion matrices were computed. The results are: 
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Scheme 1: Average Classif. Rate: 97% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

97.6 0 0.2 2.2 0.6 

0.2 98.8 0 2 0.4 

0.6 0.2 98.6 0.6 0 

1 0 0.2 94 1.2 

0.6 1 1 1.2 97.8 

Scheme 2: Average Classif. Rate: 96% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

97.8 0 0 3.6 4.2 

0 99.6 0 1 2.8 

0.2 0 100 0.8 0.6 

0.6 0.2 0 92.8 1.6 

1.4 0.2 0 1.8 90.8 
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Scheme 3: Average Classif. Rate: 88% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

90.8 0 0.4 3.8 12.4 

0.2 98.4 0 1.2 5.2 

0.8 0.6 99.4 0.4 1.8 

5 0.4 0.2 89.8 17 

3.2 0.6 0 4.8 63.6 

Scheme 4: Average Classif. Rate: 73% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

77.8 0.2 0 12.6 33.2 

1.8 97.4 0.8 3 14.4 

2 0.6 99.8 0.8 1.2 

16.4 1 0.2 82.8 43.2 

2 0.8 0 0.8 8 
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Scheme 5: Average Classif. Rate: 97% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

95.8 0.2 0 1 2.4 

2.4 98.6 1 3.6 3 

0.4 0.6 99 0 0 

0.8 0 0 95.4 0.2 

0.6 0.6 0 0 94.4 

Scheme 6: Average Classif. Rate: 98% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

97 0.8 0.4 2.2 1 

0.8 98 0 0 0.8 

0.4 0.4 99.2 0 0.2 

0.6 0 0 97.6 0.2 

1.2 0.8 0.4 0.2 97.8 
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Scheine 7: Average Classif. Rate: 95% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

96.6 2.2 0.2 0.6 3 

0.6 93.4 0 0.2 3.6 

1.8 0.4 96.8 0.6 1.8 

0.8 3 2.8 98.4 2.6 

0.2 1 0.2 0.2 89 

Scheme 8: Average Classif. Rate: 96% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

94.8 0.6 0 0.4 2.6 

0.6 97 0 0.6 3.6 

1.8 0.4 99 0.6 1.6 

2.6 2 0.8 98.2 0.6 

0.2 0 0.2 0.2 91.6 
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A few comments are in order; 

1-Results show that the mean separator based classification schemes have good 

performances. In addition, the mean separator feature reduction scheme significantly 

decreased the BP NN training time required in schemes 5 and 7. 

2-Schemes 6 and 8 are the computationally cheapest ones, as they use the decision 

scheme. 

3-Schemes 1 to 4 show that classification performances decrease as the number of 

LDB features kept decreases. This is to be expected as such feature reduction steps may 

result in information loss, causing degradations in the classifier performances. 

4-Finally, we also implemented the BCM followed by a BP neural network 

classification scheme. However, a suitable lateral inhibition factor couldn't be isolated 

and results were much worse than those shown here (62%). 

Next, we consider the Power method dimension reduction schemes mentioned in 

Chapter HI; Learned and Willsky's, most consistent, most discriminating nodes, and the 

LDB based dimension reduction schemes. The maximum scale selected was 7 resulting in 

255 power features per signal. The SNR was chosen as -5 dB. The following five 

classification schemes were implemented for comparison: 

1- 255 power features followed by a BP neural network with configuration 255- 

50-5 (83%), 

2- 16 power features selected by the Learned and Willsky's dimension reduction 

scheme followed by a BP neural network with configuration 16-5-5 (56%), 
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3-50 power features selected by the most discriminating nodes dimension 

reduction scheme followed by a BP neural network with configuration 50-10-5 (70%), 

4- 50 power features selected by the most consistent nodes dimension reduction 

scheme followed by a BP neural network with configuration 50-10-5 (76%), 

5-31 power features selected by the LDB based dimension reduction scheme 

followed by a BP neural network with configuration 31-6-5 (82%). 

Five trials were performed and the resulting average confusion matrices 

computed, leading to: 

Scheme 1: Average Classif. Rate: 83% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

77.6 25.8 4.8 2 3.4 

11 55.6 5.8 0.4 0.8 

4 15.2 89 0.2 0.6 

2.8 0.6 0.2 97.4 0.2 

4.6 2.8 0.2 0 95 

142 



Scheme 2: Average Classif. Rate: 56% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

17.4 7.4 0.4 5 8.2 

14.6 38.2 6.6 4 3.8 

14.6 31.4 91.4 2.4 3.6 

26.6 13 1.4 76.4 30 

26.8 10 0.2 12.2 54.4 

Scheme 3: Average Classif. Rate: 70% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

27.4 4 0.2 9 10 

22 77.8 10 3.4 5.6 

10.6 12.2 89.2 0.8 1.6 

14.6 1.4 0.2 78.6 3.4 

25.4 4.6 0.4 8.2 79.4 
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Scheine 4: Average Classif. Rate: 76% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

83.6 39.8 4.8 1.2 9.2 

4.4 17.8 4.4 0 0.4 

1.4 36 90.2 0 0 

2 1.2 0.4 98.8 0.2 

8.6 6.8 0.2 0 90.2 

Scheme 5: Average Classif. Rate: 82% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

77.4 29 2.8 1.4 0.2 

10 43.8 6.4 0.6 0.4 

3.4 24.6 90.4 0.4 0.2 

3.4 0.4 0.2 97.2 0 

5.8 2.2 0.2 0.4 99.2 
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Summary 

Results showed that the LDB based dimension reduction scheme used in 

connection with the Power feature extraction method gives good classification results and 

that the results are similar to those obtained using the full set of power features. 

C.       APPLICATIONS OF CLASSIFICATION SCHEMES TO UNDERWATER 
SIGNALS 

This section investigates the application of the various classification schemes 

described earlier to five real-world underwater signals: gray whale, humpback whale, 

killer whale, sperm whale and underwater earthquake. These experiments use 2 or 3 

recordings of average length 40000 per signal class. Figure 6.3 plots a section of one 

recording for each signal class. Figures 6.4 through 6.8 plot the associated spectrograms. 

One hundred training and 129 testing sets were obtained by segmenting the data in 

successive nonoverlapping segments of length 512. No attempt at time synchronization 

was made. We compared several classification performances obtained using the Power 

feature extraction and LDB schemes followed by various classification schemes. 

1.        Power Feature Extraction Scheme 

We consider the following 7 classification methods based on the Power feature 

extraction scheme: 

1-255 power features followed by a CT (74%), 

2- 255 power features followed by a BP neural network with configuration 255- 

50-5 (95%), 
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3-A combination of a Mean Separator neural network with 5 PEs followed by a 

BP neural network with configuration 5-5-5. Each PE contained in the Mean Separator 

NN was tuned to one signal class, following the Class-x/Class non-x scheme described 

earlier in Chapter V, Section 2a (90%), 

4-A mean separator neural network with 5 PEs followed by the decision scheme 

to set class labels, as described in Chapter V, Section 2a and Figure 5.14 (87%), 

5-A combination of a Mean Separator neural network with 10 PEs followed by a 

BP neural network with configuration 10-5-5. Each PE in the Mean Separator NN was 

trained to distinguish two signal classes pairwise, as described in Chapter V, Section 2b 

(92%), 

6-A mean separator neural network with 10 PEs followed by the decision scheme 

to set class labels, as described earlier in Chapter V, Section 2b and Figure 5.14 (92%), 

7- 44 power features selected by the LDB based dimension reduction scheme 

followed by a BP neural network with configuration 44-6-5 (94%). 

The resulting confusion matrices obtained are: 
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Scheine 1: Average Classif. Rate: 74% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

81.4 0 96.9 0 0 

0 86.05 0 0 0 

18.6 0 1.55 0 0 

0 0 1.55 100 0 

0 13.95 0 0 100 

Scheme 2: Average Classif. Rate: 95% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

92.25 0 12.4 0 0 

0.78 98.45 0 0 0 

6.98 0 86.82 1.55 0 

0 0 0.78 98.45 0 

0 1.55 0 0 100 
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Scheme 3: Average Classif. Rate: 90% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

93.02 0 14.73 1.55 0 

0.78 83.72 0 0 0 

5.43 0 75.19 1.55 0 

0.78 0 10.08 96.9 0 

0 16.28 0 0 100 

Scheme 4: Average Classif. Rate: 87% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

82.17 0 8.5 0.77 0 

0.77 88.37 0 0 0 

15.5 0 65.91 0.77 0 

0.77 9.3 25.58 98.45 0 

0.77 2.32 0 0 100 
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Scheme 5 Average Classif. Rate: 92% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

91.47 0 14.73 0.78 0 

0.78 93.8 0 0 0 

6.2 0 77.52 1.55 0 

1.55 0 7.75 97.67 0 

0 6.2 0 0 100 

Scheme 6 Average Classif. Rate: 92% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

87.59 0 13.95 0.77 0 

1.55 97.67 0 0 0 

8.52 0 76.74 1.55 0 

2.32 0 9.3 97.67 0 

0 2.32 0 0 100 
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Scheme 7 Average Classif. Rate: 94% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

90.7 0 13.95 0 0 

0.78 98.45 1.55 0 0 

7.75 0.78 82.95 0.78 0 

0.78 0 1.55 99.22 0 

0 0.78 0 0 100 

The best classification performance was obtained using all power features with BP 

NN (95%) and the next best performance was obtained using 44 power features selected 

by LDB based dimension reduction scheme with BP NN (94%). As a result, the LDB 

based dimension reduction scheme should be considered to reduce the number of 

features as it significantly reduces the BP NN computational load. 

2.        LDB Feature Extraction Scheme 

We consider the following 6 classification methods based on the LDB feature 

extraction scheme: 

1-512 LDB features followed by a CT (64%), 

2-256 most discriminating LDB features followed by a BP neural network with 

configuration 256-50-5 (84%), 
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3-A combination of a Mean Separator neural network with 5 PEs followed by a 

BP neural network with configuration 5-5-5. Each PE contained in the Mean Separator 

NN was tuned to one signal class, following the Class-x/Class non-x scheme described 

earlier in Chapter V, Section 2a (82%), 

4-A mean separator neural network with 5 PEs followed by the decision scheme 

to set class labels, as described in Chapter V, Section 2a and Figure 5.14 (81%), 

5-A combination of a Mean Separator neural network with 10 PEs followed by a 

BP neural network with configuration 10-5-5. Each PE in the Mean Separator NN was 

trained to distinguish two signal classes pairwise, as described in Chapter V, Section 2b 

(86%), 

6-A mean separator neural network with 10 PEs followed by the decision scheme 

to set class labels, as described earlier in Chapter V, Section 2b and Figure 5.14 (86%). 

The confusion matrices are: 

Scheme 1: Average Classif. Rate: 64% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

86.82 3.87 58.91 17.05 1.55 

0 65.89 6.97 4.65 10.1 

3.1 0 0.77 1.55 0 

10.07 3.1 33.3 76.74 0 

0 27.13 0 0 88.4 
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Scheme 2: Average Classif. Rate: 84% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

86.82 0 15.5 9.3 0 

0.78 99.22 0.78 0 0 

6.2 0 55.04 8.53 0 

6.2 0 28.68 82.17 0 

0 0.78 0 0 100 

Scheme 3: Average Classif. Rate: 82% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

78.29 0 14.73 0.78 0 

0.78 83.72 1.55 0 0 

19.38 0 48.84 1.55 0 

1.55 0 34.88 97.67 0 

0 16.28 0 0 100 
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Scheme 4: Average Classif. Rate: 81% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

77.52 0 14.72 0.77 0 

0.77 81.39 0 0 0 

20.93 0 48.06 1.55 0 

0.77 0 37.2 97.67 0 

0 18.6 0 0 100 

Scheme 5 Average Classif. Rate: 86% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

86.05 0 17.83 0.78 0 

0.78 95.35 0.78 0 0 

12.4 0 51.94 0.78 0 

0.78 0 29.46 98.45 0 

0 4.65 0 0 100 
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Scheme 6 Average Classif. Rate: 86% 

True Class Label 

1 2 3 4 5 

Declared 

as 

Class 

1 

2 

3 

4 

5 

81.39 0 17.05 0 0 

1.55 97.67 0 0 0 

14.72 0 50.38 1.55 0 

2.32 0 32.55 98.45 0 

0 2.32 0 0 100 

The best classification performance was obtained using a mean separator neural 

network with 10 PEs followed by the decision scheme (86%) or the BP NN (86%). The 

next best performance was obtained using 256 most discriminating LDB features 

followed by a BP neural network (84%). 

A few comments are in order. 

1- Classification rates show that the Power method performs well as a feature 

extraction method for underwater signals. In addition, results show that the overall 

classification rates obtained with the Power method is significantly higher than those 

obtained using LDB features. This is to be expected as we showed earlier that the Power 

method is more robust to time shifts than the LDB is, 
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2- The BP neural network gives better performance than the CT, as observed 

earlier with the synthetic data experiments, 

3- The mean separator dimension reduction schemes perform quite well. 

Classification schemes combining the mean separator and the decision scheme gave 

same performance as those combining the mean separator and the BP neural network at a 

fraction of the computational cost. Thus, there is no need to use a BP neural network 

when the mean separator NN is selected for feature reduction step, 

4- The LDB based dimension reduction scheme associated with the Power feature 

extraction method may also be considered as a good dimension reduction tool. 

EHHIH't H I 

Figure 6.3: Time domain representations of sample recordings for (from the top) gray, 
humpback, killer, sperm whales and underwater earthquake. 
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Window: , FFT: 512, Frame: 64 ms, Overlap: 102 %, FS: 8000 Hz 
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Figure 6.4: Spectrogram of gray whale recording. 
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Figure 6.5: Spectrogram of humpback whale recording. 
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Figure 6.6: Spectrogram of killer whale recording. 
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Figure 6.7: Spectrogram of sperm whale recording. 
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Figure 6.8: Spectrogram of underwater earthquake recording. 
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VII.    CONCLUSIONS 

In recent years, wavelet-based decompositions have been used in numerous areas 

such as engineering, finances, and medical applications. This popularity is due in part to 

their multi-resolution capabilities, which make them better matched to various signals of 

interest. In signal processing, wavelet decompositions have been applied to such areas as 

signal compression, noise removal and signal classification [12, 17,23, 26]. 

This work considered the application of wavelet decompositions to classification 

applications. First, we investigated the application of the wavelet packet decomposition to 

the LDB scheme originally proposed by Saito, and showed that it is sensitive to time 

synchronization problems. Thus, we investigated an alternative, based on frequency band 

specific power quantities, which are more robust to time synchronization issues without 

worsening the classification performances. 

Next, we presented and compared two main types of classifiers: back-propagation 

neural networks (BP NN) and classification trees (CT). Results showed that better 

performance was obtained with back-propagation neural networks. This is to be expected 

as BP NN have fewer constraints than CTs in partitioning the input spaces. 

Next, we considered several feature extraction and dimension reduction methods. 

Such steps are key to obtaining good classification performance when the amount of data 

available to build the classification tools is limited, or when subject to computer 

capability constraints. We considered the BCM neural network implementation, which 

can be used as a feature reduction scheme, and showed that it is computationally slow. As 
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a result, we proposed an alternative, called the mean separator neural network (MS NN), 

initially designed to distinguish between two classes, and extended it to the more-than 

two-classes case. We also showed that the MS NN can be followed by a decision step to 

create a stand alone classification scheme which has performances comparable to those 

obtained with more sophisticated classifiers, as a fraction of the computational cost. 

We investigated the behavior of the various schemes considered both on synthetic 

and real-world underwater signals. Results also showed that the proposed MS NN is a 

successful dimension reduction scheme that may be used with both LDB and Power 

feature extraction methods. 

For the underwater data considered, the following classification schemes can be 

ordered from best to worse in terms of overall classification performances: 

1- Power method + MS NN + decision scheme, 

2- Power method + MS NN + BP NN, 

3- Power method + LDB based dimension reduction scheme + BP NN, 

4- LDB + MS NN + decision scheme, 

5- LDB + MS NN + BPNN. 
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